Mechanical Properties of Concrete Added with Chicken Rachis as Reinforcement

2011 ◽  
Vol 147 ◽  
pp. 37-41 ◽  
Author(s):  
Ezahtul Shahreen Ab Wahab ◽  
Siti Fatimah Che Osmi

This investigation was carried out to look the possibility of using chicken rachis as reinforcement in concrete mix. In this study, two different percentage of rachis from chicken feather were added to plain concrete comprises of 1% and 2% from the total weight of cement. Concrete with grade 30 were formed by using chicken rachis as additive material. Selected mechanical test were performed and the results were analysed. The mechanical tests included compressive strength, and splitting tensile strength. Comparison was made of these values and those of control specimen (without chicken rachis). The results showed an increment on strength for all mechanical tests done using concrete added with 1% chicken rachis compared to 2% chicken rachis added and those control specimens.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yanlin Huang ◽  
An Zhou

In recent years, with the rapid development of the construction industry, the demand for natural river sand has become increasingly prominent. Development of alternatives to river sand has become an interesting direction for concrete research. In this paper, coal gangue was proposed to replace part of the river sand to produce coal gangue fine aggregate concrete, while waste polyethene terephthalate (PET) bottles were used as raw materials to make PET fibers to improve the mechanical properties of coal gangue fine aggregate concrete. There were two parts of the test conducted. In the first part, the compressive strength of the gangue fine aggregate concrete cube, splitting tensile strength, axial compressive strength, and static elastic modulus were studied when the substitution rate of coal gangue increased from 0% to 50%. Referring to the equation of the full stress-strain curve of plain concrete, the stress-strain constitutive equation of coal gangue fine aggregate concrete was analyzed and studied. By comparing with plain concrete, it was found that the coal gangue concrete with a replacement rate of 50% had higher compressive strength and tensile strength, but its brittleness was significantly greater than that of plain concrete in the later stage. In the second part, by studying the effect of different PET fiber content on the mechanical properties of coal gangue fine aggregate concrete with a replacement rate of 50%, it was found that when the addition of PET fiber was 0.1% and 0.3%, not only were compressive strength, splitting tensile strength, static elastic modulus, and flexural strength of the gangue fine aggregate concrete effectively improved but also the brittleness of concrete can be significantly reduced. The study found that after adding 0.3% PET fiber, the coal gangue fine aggregate concrete with a replacement rate of 50% has better mechanical properties and less brittleness.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4112
Author(s):  
Rajab Abousnina ◽  
Sachindra Premasiri ◽  
Vilive Anise ◽  
Weena Lokuge ◽  
Vanissorn Vimonsatit ◽  
...  

Adding fibers to concrete helps enhance its tensile strength and ductility. Synthetic fibres are preferable to steel ones which suffer from corrosion that reduces their functionality with time. More consideration is given to synthetic fibres as they can be sourced from waste plastics and their incorporation in concrete is considered a new recycling pathway. Thus, this work investigates the potential engineering benefits of a pioneering application using extruded macro polyfibres in concrete. Two different fiber dosages, 4 kg/m3 and 6 kg/m3, were used to investigate their influence based on several physical, mechanical and microstructural tests, including workability, compressive strength, modulus of elasticity, splitting-tensile strength, flexural test, CMOD, pull-out test and porosity. The test results revealed a slight decrease in the workability of the fibre-reinforced concrete, while all the mechanical and microstructural properties were enhanced significantly. It was observed that the compressive, splitting tensile and bonding strength of the concrete with 6 kg/m3 fibre dosage increased by 19.4%, 41.9% and 17.8% compared to the plain concrete specimens, respectively. Although there was no impact of the fibres on the modulus of rupture, they significantly increased the toughness, resulting in a progressive type of failure instead of the sudden and brittle type. Moreover, the macroporosity was reduced by the fibre addition, thus increasing the concrete compressive strength. Finally, simplified empirical formulas were developed to predict the mechanical properties of the concrete with fibre addition. The outcome of this study will help to increase the implementation of the recycled plastic waste in concrete mix design and promote a circular economy in the waste industry.


An attempt has been made in this paper to study the effect on the mechanical properties of the concrete and hollow concrete block when different types of fibres were added to the mix. The two different types of fibres added include Steel fibres with hooked end and of length 60mm at five different fibre ratios of 2.5%, 2.75%, 3.0%, 3.25% and 3.5% and Nylon fibres having a length of 18mm at the content of 0.5%, 0.75%, 1.0%, 1.25% and 1.50%. The concept of fibre hybridization was also analyzed and the effect was studied by preparing concrete mix with various percentage combinations of steel and nylon fibres at a total fibre ratio of 3% by weight of cement. The investigation focused on finding the optimum values of fibres to be added and also carried out the compressive strength and tensile strength of concrete with and without fibres. The compressive strength of hollow concrete blocks made with and without fibres was also analyzed. The samples of concrete and hollow concrete blocks were cast and immersed in water for a curing period of 28 days. The results on strength of fibre added concrete and hollow concrete block obtained was compared with the control mix result and the study concludes that the steel fibre and nylon fibre added concrete and hollow concrete block showed an improvement in the mechanical properties for each fibre ratio considered. Out of the various combinations of steel and nylon fibre tried, the best compressive strength improvement was exhibited by the concrete mix with 3% of the steel fibre without any addition of nylon fibres while the best tensile strength improvement was shown by the concrete mix with 2.25% of steel fibre and 0.75% of nylon fibre.


2015 ◽  
Vol 10 (4) ◽  
pp. 155892501501000
Author(s):  
Ramesh Kanagavel ◽  
K. Arunachalam

Mechanical properties of quaternary blending cement concrete reinforced with hybrid fibers are evaluated in this experimental study. The steel fibers were added at volume fractions of 0.5%, 1%, and 1.5 % and polypropylene fibers were added at 0.25% and 0.5% by weight of cementitious materials in the concrete mix individually and in hybrid form to determine the compressive strength, split tensile strength, flexural strength and impact resistance for all the mixes. The experimental results revealed that fiber addition improves the mechanical properties and also the ductility and energy absorption of the concrete. The results also demonstrate that the hybrid steel – polypropylene fiber reinforced concrete performs better in compressive strength, split tensile strength, flexural strength and impact resistance than mono steel and mono polypropylene fiber reinforced concrete.


2021 ◽  
Vol 895 ◽  
pp. 41-49
Author(s):  
Ali Abbas Kadhem ◽  
Hayder Abbas Al-Yousefi ◽  
Qusay A. Jabal

This investigation aims to use corn cover as natural fibers in concrete mixes to improve some mechanical properties like compressive strength, tensile strength, and flexural strength. using any type of fiber in concrete, in general, can improve the tensile and flexural strength of concrete. Concrete is weak in tension, so using fibers such as natural fibers like trunk fibers or industrial fibers such as steel fibers can improve tensile, the flexural strength of concrete and that may be decreasing the use of steel reinforcement in concrete, and also fibers can improve toughness and ductility of concrete because of its work inside the concrete that can reduce the propagation of cracks under loading. This study shows slight improvement on compressive strength by using fibers, but high increments in flexural strength, the optimum ratio of corn cover fibers was 2.5% by weight of cement which gives the highest values in compressive strength and flexural strength. compressive strength increased from (31.2 to 35.9) MPa (about 15% increment), increment for flexural strength was 70.6% for the optimum fibers content and the failure by using corn fibers was a ductile failure compared with plain concrete that gives sudden failure under flexure load, also tensile strength increased by using fibers, more fibers content beyond or more than 2.5% give lower values for the mechanical properties.


2020 ◽  
Vol 11 (4) ◽  
pp. 82
Author(s):  
Ibrahim A. Alameri ◽  
Meral Oltulu

Reuse of treated waste can provide significant environmental, social and economic benefits. It is necessary to use it in the right places while keeping the properties of the waste in mind. Aluminum-rich wastes such as red mud derived from bauxite may be used in places exposed to high temperatures. This article discusses the effects of high temperatures of 25, 200, 300, 400, 600 and 800°C and 3 hours of exposure on concrete samples replaced by red mud at 0, 10, 15 and 20%. To study the concrete’s mechanical and permeability properties, loss in weight, compressive strength, splitting tensile strength, capillary water absorption and water permeability tests were performed for all mixes. Results were closer to those of the control specimen, which ultimately supported the use of red mud at a ratio of 10%.


2019 ◽  
Vol 4 (6) ◽  
pp. 129-134
Author(s):  
Mohamad Farouk Abd-elmagied

This research aims to study the influences of three types of Nano materials on concrete compressive strength, considered Nano types were Nano-Iron Oxide Fe2O3 (NF), Nano-Manganese Oxide Mn2O3 (NM), and Nano-Silica SiO2 (NS). A constant concrete mix and water content were considered. The used percentages of different types of (NF, NM, and NS) that replaced by the cement content were (0.5, 1.0, 2.0, and 5.0%) of mixture weight (wt). The results demonstrated that the (NS) Nano type has better effect than other types on the concrete compressive strength.


2021 ◽  
Vol 895 ◽  
pp. 88-96
Author(s):  
Qusay A. Jabal ◽  
Mohammed Riyadh Al-Dikheeli

. This investigation aims to improving mechanical properties of normal concrete such as compressive strength, tensile strength, and flexural strength by using integral waterproof admixture (IWP) and also decreasing absorption of concrete, using different mix proportions of concrete, study shows a good increment of compressive strength for all mixes by using integral waterproof and also increasing the flexural and tensile strengths. The study contains also a sulfate attack study on normal mixes and integral waterproof mixes. Different percentages of IWP used in the study containing 0.0%, 1% ,1.5% and 2% for each 100 kg cement. Concrete mixes with 2% IWP admixture and 1:1:1.5 mix proportions give the highest values of compressive, tensile, and flexural strength in the study. compressive strength improved from 33.6MPa for reference 1:1:1.5 mix to 39.8 MPa by using IWP, also less absorption concrete obtained, the absorption was lowered from 3.5% to 1.7%, also deterioration in strength due to sulfate attack was small compared with reference mixes, same to other mixes 1:2:4, 1:1.5:3 that also improved by IWP admixture and lead to increasing mechanical properties and reducing absorption and sulfate attack.


This study presents the experimental investigation carried out to study the mechanical properties of concrete with and without the addition of fibres to it.d Concrete is the most consumed material in the world which has the property of strong in compression and weak in tension. Also plain concrete possess very limited ductility and little resistance to cracking. Hence fibres are introduced in the concrete to improve the tensile strength & brittleness of the concrete. These fibres which are closely spaced and dispersed uniformly in the concrete arrest the micro and macro cracks and improve the tensile strength of concrete. Concrete admixed with such fibres are known as Fibre Reinforced Concrete. The combination of two (or) more fibres called as Hybridization is carried out in this work. M25 grade concrete is designed as per IS 10262:2009 with the volume fraction of 0-1.5%. The workability of the concrete is affected due to the addition of fibres and hence super plasticizers are added to the concrete. The fibres considered for the study are (i) Crimped Steel Fibre (0-1.5%) and (ii) Shortcut Glass Fibre (0.1-0.2%). The behaviour of the hybrid fibre reinforced concrete is investigated by conducting compressive strength test on cube specimen of size 150mmx150mmx150mm and split tensile strength test on cylinder specimen of size 150mm diameter and 300mm height. From the experimental results, the optimum fibre combinations for maximum compressive strength and spilt tensile strength of concrete are identified.


2020 ◽  
Vol 398 ◽  
pp. 83-89
Author(s):  
Dalia Adil Rasool ◽  
Mais A. Abdulkarem ◽  
Mohammed Ali Abdulrehman

Iron Filings (IF) and brick powder (BP) waste materials taken from steel workshops and factories and demolition of buildings respectively .create serious environmental problems ,so the main aim of this paper is to estimate the potency of employing the mixing of waste materials (Iron Filings and brick-powder) altogether as partly replace of cement and the fine-aggregate respectively in the composition of concrete which were mixed with a ratio of (1:2:4) and (W/C) ratio equal to (0.45). In this study the cement has been replaced by Iron Filings in the proportion of ( 10%, 20%,30 %and 40%) and fine aggregate replaced by waste brick powder in the proportion of (0%,5%,10%, and 15%) by weight of concrete mix simultaneously. In this paper, the split tensile strength , the compressive strength and flexural strength of the concretes mixtures were specified. The main results of this paper appeared that the (cement and sand) can be partially replaced by ( Iron Filings and brick-powder) in the concrete mixture and it has achieved the optimum percentage of replacement by (30%IF+10%BP). So the utilization of solid waste is required in an attempt to equilibrate between the construction request and environmental sustainability and as well as saving landfill space.


Sign in / Sign up

Export Citation Format

Share Document