Nonlinear Reduction Analysis of Defects on Reticulated Shell Structure Bearing Capacity

2012 ◽  
Vol 166-169 ◽  
pp. 1341-1344
Author(s):  
Xiang Tu ◽  
Yuan Yuan Wu ◽  
Guang Liu Xie ◽  
Lei Zeng

To study the effect of various types of defects on the bearing capacity of reticulated shell structures, this paper analyzes the structural nonlinear mechanics performance under physical defects and geometric defects, combining with the matrix displacement method of structure, obtains the impact law of two defects on the reticulated shell structural bearing capacity. Two reduction methods of corresponding defects are put forward which can be used as reference in engineering design and construction. Afterwards, it is pointed out and demonstrated that the safety factor should be defined by a lot corresponding experiments.

2011 ◽  
Vol 71-78 ◽  
pp. 4194-4198
Author(s):  
Shao Qin Zhang ◽  
Hua Hu Cheng

Statically indeterminate frame, composed of beams and columns, is a widely used structure form in civil engineering. The frame carrying capacity under various actions is related to the absolute stiffness of frame components and relative beam-column line stiffness ratio. The matrix displacement method and programming based on MATLAB were employed in this study to calculate the internal forces and displacements of a 2-bay 2-story frame structure under the action of horizontal loads. The influence of the beam-column line stiffness ratio on the frame load capacity was discussed based on the calculated result. Furthermore some advises were provided about the reasonable beam-column line stiffness ratio for engineering design.


2020 ◽  
Vol 38 (7A) ◽  
pp. 960-966
Author(s):  
Aseel M. Abdullah ◽  
Hussein Jaber ◽  
Hanaa A. Al-Kaisy

In the present study, the impact strength, flexural modulus, and wear rate of poly methyl methacrylate (PMMA) with eggshell powder (ESP) composites have been investigated. The PMMA used as a matrix material reinforced with ESP at two different states (including untreated eggshell powder (UTESP) and treated eggshell powder (TESP)). Both UTESP and TESP were mixed with PMMA at different weight fractions ranged from (1-5) wt.%. The results revealed that the mechanical properties of the PMMA/ESP composites were enhanced steadily with increasing eggshell contents. The samples with 5 wt.% of UTESP and TESP additions give the maximum values of impact strength, about twice the value of the pure PMMA sample. The calcination process of eggshells powders gives better properties of the PMMA samples compared with the UTESP at the same weight fraction due to improvements in the interface bond between the matrix and particles. The wear characteristics of the PMMA composites decrease by about 57% with increases the weight fraction of TESP up to 5 wt.%. The flexural modulus values are slightly enhanced by increasing of the ESP contents in the PMMA composites.


Author(s):  
Jason Millar

This chapter argues that, just as technological artefacts can break as a result of mechanical, electrical, or other physical defects not fully accounted for in their design, they can also break as a result of social defects not fully accounted for in their design. These failures resulting from social defects can be called social failures. The chapter then proposes a definition of social failure as well as a taxonomy of social failure modes—the underlying causes that lead to social failures. An explicit and detailed understanding of social failure modes, if properly applied in engineering design practice, could result in a fuller evaluation of the social and ethical implications of technology, either during the upstream design and engineering phases of a product, or after its release. Ideally, studying social failure modes will improve people’s ability to anticipate and reduce the rate or severity of undesirable social failures prior to releasing technology into the wild.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 188
Author(s):  
Małgorzata Makarewicz ◽  
Iwona Drożdż ◽  
Tomasz Tarko ◽  
Aleksandra Duda-Chodak

This review presents the comprehensive knowledge about the bidirectional relationship between polyphenols and the gut microbiome. The first part is related to polyphenols’ impacts on various microorganisms, especially bacteria, and their influence on intestinal pathogens. The research data on the mechanisms of polyphenol action were collected together and organized. The impact of various polyphenols groups on intestinal bacteria both on the whole “microbiota” and on particular species, including probiotics, are presented. Moreover, the impact of polyphenols present in food (bound to the matrix) was compared with the purified polyphenols (such as in dietary supplements) as well as polyphenols in the form of derivatives (such as glycosides) with those in the form of aglycones. The second part of the paper discusses in detail the mechanisms (pathways) and the role of bacterial biotransformation of the most important groups of polyphenols, including the production of bioactive metabolites with a significant impact on the human organism (both positive and negative).


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3097
Author(s):  
Roberto Benato ◽  
Antonio Chiarelli ◽  
Sebastian Dambone Sessa

The purpose of this paper is to highlight that, in order to assess the availability of different HVDC cable transmission systems, a more detailed characterization of the cable management significantly affects the availability estimation since the cable represents one of the most critical elements of such systems. The analyzed case study consists of a multi-terminal direct current system based on both line commutated converter and voltage source converter technologies in different configurations, whose availability is computed for different transmitted power capacities. For these analyses, the matrix-based reliability estimation method is exploited together with the Monte Carlo approach and the Markov state space one. This paper shows how reliability analysis requires a deep knowledge of the real installation conditions. The impact of these conditions on the reliability evaluation and the involved benefits are also presented.


2012 ◽  
Vol 279 (1742) ◽  
pp. 3520-3526 ◽  
Author(s):  
Brian Tilston Smith ◽  
Amei Amei ◽  
John Klicka

Climatic and geological changes across time are presumed to have shaped the rich biodiversity of tropical regions. However, the impact climatic drying and subsequent tropical rainforest contraction had on speciation has been controversial because of inconsistent palaeoecological and genetic data. Despite the strong interest in examining the role of climatic change on speciation in the Neotropics there has been few comparative studies, particularly, those that include non-rainforest taxa. We used bird species that inhabit humid or dry habitats that dispersed across the Panamanian Isthmus to characterize temporal and spatial patterns of speciation across this barrier. Here, we show that these two assemblages of birds exhibit temporally different speciation time patterns that supports multiple cycles of speciation. Evidence for these cycles is further corroborated by the finding that both assemblages consist of ‘young’ and ‘old’ species, despite dry habitat species pairs being geographically more distant than pairs of humid habitat species. The matrix of humid and dry habitats in the tropics not only allows for the maintenance of high species richness, but additionally this study suggests that these environments may have promoted speciation. We conclude that differentially expanding and contracting distributions of dry and humid habitats was probably an important contributor to speciation in the tropics.


2007 ◽  
Vol 121-123 ◽  
pp. 1451-1454
Author(s):  
Jian Feng Chen ◽  
Guo Quan Wang ◽  
Xiao Fei Zeng ◽  
Hong Ying Zhao

Nanocomposites of nanosized-CaCO3/polypropylene-ethylene copolymer (PPE) and nanosized CaCO3/ PPE/ styrene-butadiene-styrene (SBS) were prepared by using two-roll mill and single screw extruder. The average particle size of nanosized CaCO3 was determined to be about 30 nm. By adding nanosized CaCO3 into PPE matrix, the toughness of the matrix improves significantly. At nanosized CaCO3 content of 12 phr (parts per hundred PPE resin by weight), the impact strength of CaCO3/PPE at room temperature reaches 61.6 KJ/m2, which is 3.02 times that of unfilled PPE matrix. In addition, the synergistic toughening effect of nanosized CaCO3 and SBS particles on PPE matrix was investigated.


2019 ◽  
Vol 38 (2019) ◽  
pp. 404-410 ◽  
Author(s):  
Weijuan Li ◽  
Haijian Xu ◽  
Xiaochun Sha ◽  
Jingsong Meng ◽  
Zhaodong Wang

AbstractIn this study, oxide dispersion strengthened (ODS) ferritic steels with nominal composition of Fe–14Cr–2W–0.35Y2O3 (14Cr non Zr-ODS) and Fe–14Cr–2W–0.3Zr–0.35Y2O3 (14Cr–Zr-ODS) were fabricated by mechanical alloying (MA) and hot isostatic pressing (HIP) technique to explore the impact of Zr addition on the microstructure and mechanical properties of 14Cr-ODS steels. Microstructure characterization revealed that Zr addition led to the formation of finer oxides, which was identified as Y4Zr3O12, with denser dispersion in the matrix. The ultimate tensile strength (UTS) of the non Zr-ODS steel is about 1201 MPa, but UTS of the Zr-ODS steel increases to1372 MPa, indicating the enhancement of mechanical properties by Zr addition.


Sign in / Sign up

Export Citation Format

Share Document