Analysis of New Type Repulsion Mechanism Performance

2012 ◽  
Vol 192 ◽  
pp. 154-158
Author(s):  
Yong Sheng Xu ◽  
Li Kong

Using circuit method to analysis equations of circuit and motion of coil-coil Mechanism, numerical simulations were also made. Simple method of experimental verification was proposed. The numerical results show influence of circuit parameter and benefits of multiple series gaps.

2018 ◽  
Vol 55 (4) ◽  
pp. 652-657 ◽  
Author(s):  
Gabriel Murariu ◽  
Razvan Adrian Mahu ◽  
Adrian Gabriel Murariu ◽  
Mihai Daniel Dragu ◽  
Lucian P. Georgescu ◽  
...  

This article presents the design of a specific unmanned aerial vehicle UAV prototype own building. Our UAV is a flying wing type and is able to take off with a little boost. This system happily combines some major advantages taken from planes namely the ability to fly horizontal, at a constant altitude and of course, the great advantage of a long flight-time. The aerodynamic models presented in this paper are optimized to improve the operational performance of this aerial vehicle, especially in terms of stability and the possibility of a long gliding flight-time. Both aspects are very important for the increasing of the goals� efficiency and for the getting work jobs. The presented simulations were obtained using ANSYS 13 installed on our university� cluster system. In a next step the numerical results will be compared with those during experimental flights. This paper presents the main results obtained from numerical simulations and the obtained magnitudes of the main flight coefficients.


2021 ◽  
pp. 875608792110260
Author(s):  
ME Ismail ◽  
MM Awad ◽  
AM Hamed ◽  
MY Abdelaal ◽  
EB Zeidan

This study experimentally and numerically investigates a typical HDPE blown film production process cooled via a single-lip air-ring. The processing observations are considered for the proposed subsequent modifications on the air-ring design and the location relative to the die to generate a radial jet, directly impinging on the bubble. Measurements are performed to collect the actual operating parameters to set up the numerical simulations. The radiation heat transfer and the polymer phase change are considered in the numerical simulations. The velocity profile at the air-ring upper-lip is measured via a five-hole Pitot tube to compare with the numerical results. The comparison between the measurements and the numerical results showed that the simulations with the STD [Formula: see text] turbulence model are more accurate with a minimum relative absolute error (RAE) of 1.6%. The numerical results indicate that the peak Heat Transfer Coefficient (HTC) at the impingement point for the modified design with radial jet and longer upper-lip is 29.1% higher than the original design at the same conditions. Besides, increasing the air-ring upper-lip height increased the averaged HTC, which is 13.4% higher than the original design.


Author(s):  
Mojtaba Fardi ◽  
Yasir Khan

The main aim of this paper is to propose a kernel-based method for solving the problem of squeezing Cu–Water nanofluid flow between parallel disks. Our method is based on Gaussian Hilbert–Schmidt SVD (HS-SVD), which gives an alternate basis for the data-dependent subspace of “native” Hilbert space without ever forming kernel matrix. The well-conditioning linear system is one of the critical advantages of using the alternate basis obtained from HS-SVD. Numerical simulations are performed to illustrate the efficiency and applicability of the proposed method in the sense of accuracy. Numerical results obtained by the proposed method are assessed by comparing available results in references. The results demonstrate that the proposed method can be recommended as a good option to study the squeezing nanofluid flow in engineering problems.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1663 ◽  
Author(s):  
Lei Jiang ◽  
Mingjun Diao ◽  
Haomiao Sun ◽  
Yu Ren

The objective of this study was to evaluate the effect of the upstream angle on flow over a trapezoidal broad-crested weir based on numerical simulations using the open-source toolbox OpenFOAM. Eight trapezoidal broad-crested weir configurations with different upstream face angles (θ = 10°, 15°, 22.5°, 30°, 45°, 60°, 75°, 90°) were investigated under free-flow conditions. The volume-of-fluid (VOF) method and two turbulence models (the standard k-ε model and the SST k-w model) were employed in the numerical simulations. The numerical results were compared with the experimental results obtained from published papers. The root mean square error (RMSE) and the mean absolute percent error (MAPE) were used to evaluate the accuracy of the numerical results. The statistical results show that RMSE and MAPE values of the standard k-ε model are 0.35–0.67% and 0.50–1.48%, respectively; the RMSE and MAPE values of the SST k-w model are 0.25–0.66% and 0.55–1.41%, respectively. Additionally, the effects of the upstream face angle on the flow features, including the discharge coefficient and the flow separation zone, were also discussed in the present study.


Author(s):  
Giovanni Noselli ◽  
Antonio DeSimone

We present experimental and numerical results for a model crawler which is able to extract net positional changes from reciprocal shape changes, i.e. ‘breathing-like’ deformations, thanks to directional, frictional interactions with a textured solid substrate, mediated by flexible inclined feet. We also present a simple reduced model that captures the essential features of the kinematics and energetics of the gait, and compare its predictions with the results from experiments and from numerical simulations.


Author(s):  
Amador M. Guzma´n ◽  
Andre´s J. Di´az ◽  
Luis E. Sanhueza ◽  
Rodrigo A. Escobar

The flow characteristics of a rarified gas have been investigated in microgrooved channels. The governing Boltzmann Transport Equation (BTE) is solved by the Lattice-Boltzmann method (LBM) for the Knudsen number range of 0.01–0.1. First, the compressibility and rarified effects are investigated in a plane channel by performing numerical simulations for different Knudsen numbers, pressure ratio and accommodation coefficients with the objective of validating the computational code used in this investigation and determining the transition characteristics from the macro to microscale. The numerical predictions are compared to existing analytical and numerical results. Then, numerical simulations are performed for microgrooved channels for the Knudsen numbers range of [0.01–0.1]. Different meshes are used for preserving numerical stabilities and obtaining accurate enough numerical results. For the microgrooved channel configuration, the fluid characteristics are determined in terms of pressure ratio and Knudsen numbers. The numerical results are compared to existing analytical predictions and numerical results obtained from plane channel and one cavity simulations.


2002 ◽  
Vol 39 (6) ◽  
pp. 1333-1340 ◽  
Author(s):  
A Fawaz ◽  
M Boulon ◽  
E Flavigny

This paper presents a study of the pressuremeter test and the results that can be obtained from this test. Hostun's fine sand was chosen as the material upon which to perform the experimental study of the pressuremeter. Numerical simulations of the pressuremeter tests have been made with the commercially available PLAXIS software. The numerical results have been compared with the experimental ones. The variation of the parameters resulting from an applied surcharge was studied experimentally and numerically. Finally, the relationship between the magnitude of the deformation and the pressuremeter modulus was analyzed.Key words: sand, pressuremeter, triaxial, pressure, modulus, deformation, numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document