Design and Simulation of the Inverted F Antenna for RFID Tags

2013 ◽  
Vol 303-306 ◽  
pp. 1822-1825
Author(s):  
Bin Wang ◽  
Shu Hui Yang ◽  
Di Feng ◽  
Ting Lan Wang ◽  
Zhen Wei Su ◽  
...  

In this paper, an inverted F antenna works in the 5.8GHz frequency band is proposed. On the platform of Ansoft HFSS14 , the antenna’s return loss reaches -51.97dB at the center frequency 5.8GHz and the relative bandwidth is about 22.4% when the return loss is less than -10dB. Also ,the size of the antenna is only 18mm*15mm. Compared with the existing antenna works in the same frequency band , the inverted F antenna proposed has a lower return loss and smaller physical size. The new designed antenna can be applied to the RFID system of road tolls and container management, which have certain values for application.

2014 ◽  
Vol 577 ◽  
pp. 632-635 ◽  
Author(s):  
Peng Geng ◽  
Shu Hui Yang ◽  
Yue Wang ◽  
Yin Chao Chen

In this paper we designed a 5.8GHZ microstrip antenna whose relative bandwidth is 3.77% and return loss is-36.941dB. It meets the needs of RFID systems.Besides, the resonant frequency of the antennas is reduced to 5.2GHZ, after adding the “I” ring resonator. Also, the paper shows that the other performance of the antenna still meet the RFID system requirements. It is 47.1% of the original size after adjusting the resonant frequency of the antenna to 5. 8GHz.


Wireless body area networks have paying more attention in the recent decade. The microstrip textile antenna used for wireless applications (ISM Band) such as emergency rescue, health monitoring and medical care. In this paper, the square patch microstrip textile antenna is introduced which is mounted on the flexible jeans substrate. The physical size of the suggested/simulated textile antenna is 52.99 X 45.23 mm2 & the jean’s material is used as substrate with its relative permittivity of ɛr = 1.67. The proposed antenna is radiating at the center frequency of 2.45 GHz with a return loss of -15.76 dB & VSWR 1.389, the far field directivity of an antenna is 8.05 dBi at 2.45GHz. The designed antenna is wearable on the clothes because the use of textile material for antenna fabrication by keeping SAR at 1.6 W/Kg.


2014 ◽  
Vol 704 ◽  
pp. 219-224
Author(s):  
Guang Ming Zheng

The cross coupled microwave filter is widely used in the communication sub system .The synthesis of the cross coupled filter is from prescribed transmission zeros and return loss till the attainment of the coupling matrix of each cavity. A compact narrowband combline high rejection filter with cross coupled is presented. A configureiton using identical resonator post with capacitance-loading is introduced. Tested results show that with order-8 filter center frequency at 2017.5MHz, return loss lower than-25dB can be achieved over a relative bandwidth of 1.29%. A sample filter has been fabricated and tested result confirmed the theory result.


Frequenz ◽  
2020 ◽  
Vol 74 (7-8) ◽  
pp. 263-270
Author(s):  
Cao Zeng ◽  
Xue Han Hu ◽  
Feng Wei ◽  
Xiao Wei Shi

AbstractIn this paper, a tunable balanced-to-balanced in-phase filtering power divider (FPD) is designed, which can realize a two-way equal power division with high selectivity and isolation. A differential-mode (DM) passband with a steep filtering performance is realized by applying microstrip stub-loaded resonators (SLRs). Meanwhile, six varactors are loaded to the SLRs to achieve the center frequency (CF) and bandwidth adjustment, respectively. U-type microstrip lines integrated with stepped impedance slotline resonators are utilized as the differential feedlines, which suppress the common-mode (CM) intrinsically, making the DM responses independent of the CM ones. A tuning center frequency from 3.2 to 3.75 GHz and a fractional bandwidth (12.1–17.6%) with more than 10 dB return loss and less than 2.3 dB insertion loss can be achieved by changing the voltage across the varactors. A good agreement between the simulated and measured results is observed. To the best of authors' knowledge, the proposed balanced-to-balanced tunable FPD is first ever reported.


2012 ◽  
Vol 490-495 ◽  
pp. 305-308
Author(s):  
Yu Liang ◽  
Yu Guo ◽  
Chuan Hui Wu ◽  
Yan Gao

Envelope analysis based on the combination of complex Morlet wavelet and Kurtogram have advantages of automatic calculation of the center frequency and bandwidth of required band-pass filter. However, there are some drawbacks in the traditional algorithm, which include that the filter bandwidth is not -3dB bandwidth and the analysis frequency band covered by the filter-banks are inconsistent at different levels. A new algorithm is introduced in this paper. Through it, both optimal center frequency and bandwidth of band-pass filter in the envelop analysis can be obtained adaptively. Meanwhile, it ensures that the filters in the filter-banks are overlapped at the point of -3dB bandwidth and the consistency of frequency band that the filter-banks covered.


2021 ◽  
Vol 263 (3) ◽  
pp. 3064-3072
Author(s):  
Takashi Yamauchi ◽  
Atsuo Hiramitsu ◽  
Susumu Hirakawa

The air layer between the interior finishes and the structure is used as piping and wiring space. In many cases, ceilings and dry-type double floors are commonly constructed in Japan. However, the effect of the air layer of ceilings and dry-type double floors on the heavy-weight floor impact sound insulation performance has not yet quantitatively investigated. Therefore, in this study, the same floor and ceiling structures were constructed for concrete and CLT buildings, and the heavy-weight floor impact sound was investigated. As results, it was confirmed that the reduction amount of the heavy-weight floor impact sound by the ceiling tended to be smaller in CLT buildings than in concrete buildings. However, the trends were similar. Due to the dry-type double floor structure, the heavy-weight floor impact sound level was increased in concrete building and decreased in CLT building at 63 Hz in the octave band center frequency band. Therefore, it can be said that the dry-type double floor structure can be used to improve the heavy-weight floor impact sound performance in the CLT building.


This paper presents design and analytical model for Sharp Skirt Dual-Mode Bandpass Filter for RF receivers. Proposed filter is designed using open stub loaded H shaped resonator. Based on analytical model insertion loss S21 and return loss S11 for proposed filter are demonstrated. Inductive Overlaying plate is proposed to control upper passband edge of proposed filter to improve frequency selectivity with fixed center frequency. The proposed filter has sharp frequency selective range from 5.1GHz to 9.2GHz. With overlay plate, frequency selective range is tuned to 5.1GHz-8.6GHz. Without overlaying plate the proposed filter has return loss greater than 10dB and insertion loss of 0.7dB. Lower and upper passband edges are at 5.1GHz and 9.2GHz with attenuation level of 52dB and 54dB respectively. With overlaying plate, the filter has same S 11 and S 21 parameters, but upper passband edge is shifted from 9.2GHz to 8.6GHz


2014 ◽  
Vol 7 (6) ◽  
pp. 655-660 ◽  
Author(s):  
Photos Vryonides ◽  
Symeon Nikolaou ◽  
Sangkil Kim ◽  
Manos M. Tentzeris

A reconfigurable band-pass filter with switchable bandwidth, for wireless applications is demonstrated using a dual-mode microstrip square-loop resonator. The proposed filter has been designed on Rogers RO4003C and achieves switchable bandwidth by changing the length of two tuning stubs with the implementation of two strategically placed p-i-n diodes as switching elements. The filter was designed with a center frequency of 2.4 GHz and the two distinct operation states have bandwidths, 113 MHz (4.8%) with an insertion loss of 1.2 dB and 35 MHz (1.5%) with an insertion loss of 1.5 dB. The physical size of the fabricated reconfigurable filter including the implementation of the DC bias lines is comparable to the size of a conventional filter.


2011 ◽  
Vol 2011 (CICMT) ◽  
pp. 000050-000053
Author(s):  
Alexander Schulz ◽  
Sven Rentsch ◽  
Lei Xia ◽  
Robert Mueller ◽  
Jens Mueller

This paper presents a low loss fully embedded bandpass filter (BPF) using low temperature co-fired ceramic (LTCC) for multilayer System-in-Package (SiP) and Multi-Chip-Module (MCM) applications, e.g. wireless applications for the unlicensed 60 GHz band. The measured insertion loss was 1.5 dB at the center frequency 58 GHz, and a return loss of less than −10 dB was achieved, including two grounded coplanar waveguide transmission line (CPWg) to stripline transitions. The four layers BPF has a 3 dB bandwidth of about 11 GHz which supplies e.g. broadband and high data rate applications. The whole BPF requires a substrate area of 5.6 × 2.1 × 0.42 mm3 with transitions and a shielding via fence. This BPF suits well for V-band applications in a LTCC package because of the compact dimensions and the good performance.


2018 ◽  
Vol 38 ◽  
pp. 03039
Author(s):  
Chang Zhou ◽  
Chen Ji ◽  
Gen Ping Wu

A technique for tunable filters with low insertion loss and narrow bandwidth is proposed in the form of comb-line structure. Both resonant capacitor with pin-diodes and resonant inductance in the tunable filter were analyzed and the main source of insertion loss was obtained. A series of filters with same pin-diodes, center frequency, absolute bandwidth and low return loss was simulated. The results showed that, by changing the values of the resonant capacitor and inductance, insertion loss of the filter can be greatly restricted. This technique will allow the design of tunable LC filters with low insertion loss and narrow bandwidth.


Sign in / Sign up

Export Citation Format

Share Document