scholarly journals Design of High Gain Wearable Rectangular Microstrip Textile Antenna for Wireless Application

Wireless body area networks have paying more attention in the recent decade. The microstrip textile antenna used for wireless applications (ISM Band) such as emergency rescue, health monitoring and medical care. In this paper, the square patch microstrip textile antenna is introduced which is mounted on the flexible jeans substrate. The physical size of the suggested/simulated textile antenna is 52.99 X 45.23 mm2 & the jean’s material is used as substrate with its relative permittivity of ɛr = 1.67. The proposed antenna is radiating at the center frequency of 2.45 GHz with a return loss of -15.76 dB & VSWR 1.389, the far field directivity of an antenna is 8.05 dBi at 2.45GHz. The designed antenna is wearable on the clothes because the use of textile material for antenna fabrication by keeping SAR at 1.6 W/Kg.

2014 ◽  
Vol 7 (6) ◽  
pp. 655-660 ◽  
Author(s):  
Photos Vryonides ◽  
Symeon Nikolaou ◽  
Sangkil Kim ◽  
Manos M. Tentzeris

A reconfigurable band-pass filter with switchable bandwidth, for wireless applications is demonstrated using a dual-mode microstrip square-loop resonator. The proposed filter has been designed on Rogers RO4003C and achieves switchable bandwidth by changing the length of two tuning stubs with the implementation of two strategically placed p-i-n diodes as switching elements. The filter was designed with a center frequency of 2.4 GHz and the two distinct operation states have bandwidths, 113 MHz (4.8%) with an insertion loss of 1.2 dB and 35 MHz (1.5%) with an insertion loss of 1.5 dB. The physical size of the fabricated reconfigurable filter including the implementation of the DC bias lines is comparable to the size of a conventional filter.


2011 ◽  
Vol 2011 (CICMT) ◽  
pp. 000050-000053
Author(s):  
Alexander Schulz ◽  
Sven Rentsch ◽  
Lei Xia ◽  
Robert Mueller ◽  
Jens Mueller

This paper presents a low loss fully embedded bandpass filter (BPF) using low temperature co-fired ceramic (LTCC) for multilayer System-in-Package (SiP) and Multi-Chip-Module (MCM) applications, e.g. wireless applications for the unlicensed 60 GHz band. The measured insertion loss was 1.5 dB at the center frequency 58 GHz, and a return loss of less than −10 dB was achieved, including two grounded coplanar waveguide transmission line (CPWg) to stripline transitions. The four layers BPF has a 3 dB bandwidth of about 11 GHz which supplies e.g. broadband and high data rate applications. The whole BPF requires a substrate area of 5.6 × 2.1 × 0.42 mm3 with transitions and a shielding via fence. This BPF suits well for V-band applications in a LTCC package because of the compact dimensions and the good performance.


2013 ◽  
Vol 303-306 ◽  
pp. 1822-1825
Author(s):  
Bin Wang ◽  
Shu Hui Yang ◽  
Di Feng ◽  
Ting Lan Wang ◽  
Zhen Wei Su ◽  
...  

In this paper, an inverted F antenna works in the 5.8GHz frequency band is proposed. On the platform of Ansoft HFSS14 , the antenna’s return loss reaches -51.97dB at the center frequency 5.8GHz and the relative bandwidth is about 22.4% when the return loss is less than -10dB. Also ,the size of the antenna is only 18mm*15mm. Compared with the existing antenna works in the same frequency band , the inverted F antenna proposed has a lower return loss and smaller physical size. The new designed antenna can be applied to the RFID system of road tolls and container management, which have certain values for application.


2017 ◽  
Vol 9 (7) ◽  
pp. 1541-1545 ◽  
Author(s):  
Rachid Dakir ◽  
Jamal Zbitou ◽  
Ahmed Mouhsen ◽  
Abdelwahed Tribak ◽  
Angel Mediavilla Sanchez ◽  
...  

In this paper, the design of a new compact uniplanar coplanar waveguide-fed antenna for multiband wireless application is presented and investigated. This antenna has a compact size of 25 × 25 mm2 and consists of a three parallel stub optimized added on rectangular slot to the radiator patch and T-shaped which inverted in the ground plane. The final prototype antenna designing resonantes at frequency bands (2.4–2.9 GHz), (3.7–5.2 GHz), and (5.7–6 GHz) with a return loss less than −10 dB. Details of the antenna configuration, design, simulation, and experimental results are presented, investigated, and discussed. The compactness, simple feeding technique, and conception of the uniplanar design make it easy to be integrated within devices of multiples wireless applications.


Author(s):  
Kamil Pongot ◽  
Abdul Rani Othman ◽  
Zahriladha Zakaria ◽  
Mohamad Kadim Suaidi ◽  
Abdul Hamid Hamidon ◽  
...  

This research present a design of a higher  gain (66.38dB) for PHEMT LNA  using an inductive drain feedback technique for wireless application at 5.8GHz. The amplifier it is implemented using PHEMT FHX76LP transistor devices.  The designed circuit is simulated with  Ansoft Designer SV.  The LNA was designed using  T-network as a matching technique was used at the input and output terminal,  inductive generation to the source and an inductive drain feedback. The  low noise amplifier (LNA) using lumped-component provides a noise figure 0.64 dB and a gain (S<sub>21</sub>) of 68.94 dB. The output reflection (S<sub>22</sub>), input reflection (S<sub>11</sub>) and return loss (S<sub>12</sub>) are -17.37 dB, -15.77 dB and -88.39 dB respectively. The measurement shows the  stability was at  4.54 and 3-dB bandwidth of 1.72 GHz. While, the  low noise amplifier (LNA) using  Murata manufactured component provides a noise figure 0.60 dB and a gain (S<sub>21</sub>) of 66.38 dB. The output reflection (S<sub>22</sub>), input reflection (S<sub>11</sub>) and return loss (S<sub>12</sub>) are -13.88 dB, -12.41 dB and -89.90 dB respectively. The measurement shows the  stability was at  6.81 and 3-dB bandwidth of 1.70 GHz. The input sensitivity more than -80 dBm  exceeded the standards required by IEEE 802.16.


2021 ◽  
Vol 9 (2) ◽  
pp. 707-721
Author(s):  
Kunapareddy Koteswara Rao, Et. al.

In this paper a compact EBG antenna with Artificial Magnetic Conductor (AMC) is proposed for on body applications. The proposed antenna is designed with single SRR (split ring resonator) and double SRR to differentiate the performance of the proposed antenna. The proposed EBG antenna bending analysis is performed at different angles on human body to attain good radiation characteristics. The footprint of proposed antenna is of 0.2λ0*0.24λ0mm2 and AMC with dimension of 0.48λ0*0.48λ0 mm2.The proposed antenna is obtained good return loss and radiation characteristics when EBG antenna is placed on the human leg with an angle of 300 at corresponding operating frequencies 2.4GHz, 5.8GHz, 9GHz and 9.5GHz respectively. The obtained operating frequencies cover wireless applications such as GPS, ISM, and Radar and satellite communications. The proposed EBG antenna is obtained with high gain 7.05dBi at 9.5GHz operating frequency. The surface current distributions are obtained for the proposed antenna is of 137A/m. Good isometric radiation patterns are observed for the proposed antenna. The SAR analysis is performed when the EBG antenna is placed on the human leg at an angle of 30degree is of 1.23W/kg.


2021 ◽  
Vol 9 (1) ◽  
pp. 22-31
Author(s):  
M. Saravanan, K. Devarajan

UltraWide Bandwidth (UWB) antenna with Deflected Ground Structure for wireless communication is presented in this paper. Our proposed antenna design is consisting of elliptical shape slot at patch and Quarter wave transmission line at the ground with multiband frequency operation in various wireless communications.An antenna is designed using FR4 substrate with permittivity value of 4.4 and thickness of 0.8 mm. The size of the antenna is 50 x 70 mm2presents a high gain of 4 dB with Ultra Wide Bandwidth. In proposed antenna quarter wave ground is imposed with Deflected Ground Structure to achieve overall size reduction. The ultra bandwidth antenna proposed in this paper operates at multiband frequencies centered at 3.0267 GHz, 6.1933 GHz, 9.1911 GHz, 12.1467 GHz, and 15.06 GHz with corresponding return loss of -24.0553 dB, -40.9292 dB, -20.7534 dB, -41.8718 dB, -30.1747 dB.


Author(s):  
Kinde Anlay Fante ◽  
Mulugeta Tegegn Gemeda

In this paper, a 28 GHz broadband microstrip patch antenna (MSPA) for 5G wireless applications is presented. The Rogers RT/Duroid5880 substrate material, with a dielectric constant of 2.2, the thickness of 0.3451 mm, and loss tangent of 0.0009, is used for the studied antenna to operate at 28 GHz center frequency. The proposed design of antenna is simulated by using CST studio suite. The simulation results highlight that the studied antenna has a return loss of -54.49 dB, a bandwidth of 1.062 GHz, a gain of 7.554 dBi. Besides, radiation efficiency and the sidelobe level of the proposed MSPA are 98% and 18.4 dB, respectively. As compared to previous MSPA designs reported in the recent scientific literature, the proposed rectangular MSPA has achieved significantly improved performance in terms of the bandwidth, beam-gain, return loss, sidelobe level, and radiation efficiency. Hence, it is a potential contender antenna type for emerging 5G wireless communication applications.


2015 ◽  
Vol 76 (1) ◽  
Author(s):  
Delphine Abijuru ◽  
M. R. Hamid

A new concept of antenna which quantifies the potential gain of pattern and frequency control in order to suit the requirements of wireless applications such as body area network is presented in this paper. The proposed antenna ranges from 3 GHz to 6 GHz for a wideband operation and operates at 3.5 GHz for a narrowband operation. It uses two types of feedings (CPW and Slotlines) for pattern control with integrated ring resonators for the switching of wideband operation to narrowband operation while maintaining the polarization. The upright return loss characteristics, the controlled radiation pattern and great bandwidth demonstrated at the resonant frequencies make this antenna suitable for applications in these fields.  


This paper focuses on design, simulation and experimental analysis of rectangular MSA with and without superstrates. The rectangular MPA is designed at frequency range of 2.40 GHz, which is lying in the S band region. The transmission line model analysis and High Frequency Simulation Software (HFSS) is used for designing of proposed rectangular MPA. The proposed antenna is fabricated on Arlon diclad 880 substrate, whose dielectric constant is 2.2, thickness of the substrate is 1.6mm and loss tangent is 0.0009. In this paper the effect of dielectric superstrates on rectangular MPA and the height of superstrate are varying above the rectangular MPA is investigated experimentally and compared with simulated and measured results. The proposed antenna has been analyzed using different dielectric superstrates. From the study it was observed that in antenna without superstrate the VSWR is 1.21, return loss is -18.51dB, bandwidth is 0.038GHz. However, gain is 8.77dB. In the antennas with superstrates, center frequency is shifted from 2.40 GHz to 2.33 GHz as well as other parameters are slightly degraded. As superstrate height increases, the performance antenna is degraded and at particular optimum height the performance characteristics of antenna with and without superstrate will be same. The frequency range 2.40 GHz is used in wireless applications.


Sign in / Sign up

Export Citation Format

Share Document