Fabrication of a Superhydrophobic Aluminum Alloy Surface by Phosphoric Acid-Dichromate Method

2013 ◽  
Vol 312 ◽  
pp. 350-353
Author(s):  
Ruo Mei Wu ◽  
Guang Hua Chao ◽  
Hai Yun Jiang

The preparation method of the superhydrophobic surface on aluminum alloys was investigated, the method is novel by phosphoric acid-dichromate process and stearic acid coating, superhydrophobic aluminum alloy surfaces were successful prepared, the maximum static water contact angle and sliding angle on the superhydrophobic surface was 151±1.8° and 10°, respectively. In this work, the microstructure and self-cleaning properties of the superhydrophobic surface were studied. The superhydrophobic surface is a factor to reduce device-associated contamination and can be used in metal packaging practice.

Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 106 ◽  
Author(s):  
Yan Zhang ◽  
Jing Zhang ◽  
Yujian Liu

A superhydrophobic surface was synthesized by a combination of an epoxy/polymethylphenylsiloxane matrix and dual-scale morphology of silica (SiO2) nanoparticles. When the amount of SiO2 reached 30 wt.%, the as-prepared surface showed a high static water contact angle (WCA) of 154° and a low sliding angle (SA) of 5°, excellent water repellency, and dirt-removal effects both in air and oil (hexamethylene). Even after exposure to as high as a 12.30 Mrad dose of gamma-rays, the composite surface still maintained its superior performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Maciej Psarski ◽  
Jacek Marczak ◽  
Jarosław Grobelny ◽  
Grzegorz Celichowski

Superhydrophobic surfaces were obtained by superposition of microstructure—defined by replication of laser micromachined masters, with nanostructure—created by durable epoxy/γ-Al2O3nanoparticle composite, used for replication. Hierarchical surface topography thus obtained consisted of hexagonally spaced microcavities and nanoparticle agglomerates, exposed on the replica surface by radio frequency (RF) air plasma etching. Surface topography was further enhanced by rims around the microcavity edges, resulting from nanosecond laser micromachining defects in aluminum masters. Subsequent wet chemical hydrophobization with 1H,1H,2H,2H-perfluorotetradecyltriethoxysilane (PFTDTES) provided superhydrophobic behavior in replicas with a microcavity spacing of 30 μm, as indicated by a water contact angle of 160° and a sliding angle of 8°. The preparation method is relatively simple, inexpensive, and potentially scalable.


2021 ◽  
Vol 11 (12) ◽  
pp. 2004-2009
Author(s):  
Ruomei Wu ◽  
Shuai Wu ◽  
Haiyun Jiang ◽  
Zigong Chang ◽  
Zhiqing Yuan ◽  
...  

Anti-corrosion of aluminum alloys with different roughness were researched in this study. To further verify the relationship between anti-corrosion and surface roughness, surface with micro structure alloy was successfully fabricated via anode oxidation on aluminum. The water contact angle of aluminum alloy surface after coating polypropylene film was 154° and sliding angle was 3°. The micro-nano structure was constructed by adding nano-SiO2. The contacts angle of surface was 165° and the sliding angle was 1.8°. The superhydrophobic samples were used to test corrosion resistance. Compared with aluminum coated with unmodified film, the corrosion potential for modified superhydrophobic aluminum alloy increased by about 0.05 V. When nano-SiO2 particles were added, the corrosion resistance for the sample was also improved.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 159 ◽  
Author(s):  
Xiaojuan Dong ◽  
Jianbing Meng ◽  
Yizhong Hu ◽  
Xiuting Wei ◽  
Xiaosheng Luan ◽  
...  

Aluminum alloys are widely used, but they are prone to contamination or damage under harsh working environments. In this paper, a self-cleaning superhydrophobic aluminum alloy surface with good corrosion resistance was successfully fabricated via the combination of sand peening and electrochemical oxidation, and it was subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphology, surface wettability, and corrosion resistance were investigated using a scanning electron microscope (SEM), an optical contact angle measurement, and an electrochemical workstation. The results show that binary rough structures and an FAS film with a low surface energy on the Al alloy surfaces confer good superhydrophobicity with a water contact angle of 167.5 ± 1.1° and a sliding angle of 2.5 ± 0.7°. Meanwhile, the potentiodynamic polarization curve shows that the corrosion potential has a positively shifted trend, and the corrosion current density decreases by three orders of magnitude compared with that of the original aluminum alloy sample. In addition, the chemical stability of the as-prepared superhydrophobic surface was evaluated by dripping test using solutions with different pH values for different immersion time. It indicates that the superhydrophobic surface could provide long-term corrosion protection for aluminum alloys. Consequently, the as-prepared superhydrophobic surface has excellent contamination resistance and self-cleaning efficacy, which are important for practical applications.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Subhas Ghosh ◽  
Roopkatha Pallye

This study intended to develop a healthy and environmentally friendly super-hydrophobic PET polyester textile fabric using a specific Fluoro Silane finish (SHF). A novel SHF was prepared and applied on a polyester fabric using a pad-dry-cure method. The finished fabric was evaluated for the degree of hydrophobicity, durability and stain repellence. The finished fabric exhibited static water contact angle greater than 170o and received 90 AATCC (4 ISO) rating that is recognized as super-hydrophobicity and this property was maintained even after a 50,000-cycle abrasion test. FTIR analysis identified the characteristic peaks related to Si-O-Si and C-F asymmetric stretching bands of the finish on the fabric indicating a robust attachment on the fabric. Finished fabric did not show any change in appearance or tactile characteristics of the fabric. 


2018 ◽  
Vol 6 (21) ◽  
pp. 3486-3496 ◽  
Author(s):  
Jian-Wei Guo ◽  
Zhen-Yu Lin ◽  
Bohr-Ran Huang ◽  
Chien-Hsing Lu ◽  
Jem-Kun Chen

The static water contact angle of stimuli-responsive fibrous mats is used as a convenient index for rapid antigen detection.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 942 ◽  
Author(s):  
José J. Benítez ◽  
Sonja Osbild ◽  
Susana Guzman-Puyol ◽  
Antonio Heredia ◽  
José A. Heredia-Guerrero

Metals used for food canning such as aluminum (Al), chromium-coated tin-free steel (TFS) and electrochemically tin-plated steel (ETP) were coated with a 2–3-µm-thick layer of polyaleuritate, the polyester resulting from the self-esterification of naturally-occurring 9,10,16-trihydroxyhexadecanoic (aleuritic) acid. The kinetic of the esterification was studied by FTIR spectroscopy; additionally, the catalytic activity of the surface layer of chromium oxide on TFS and, in particular, of tin oxide on ETP, was established. The texture, gloss and wettability of coatings were characterized by AFM, UV-Vis total reflectance and static water contact angle (WCA) measurements. The resistance of the coatings to solvents was also determined and related to the fraction of unreacted polyhydroxyacid. The occurrence of an oxidative diol cleavage reaction upon preparation in air induced a structural modification of the polyaleuritate layer and conferred upon it thermal stability and resistance to solvents. The promoting effect of the tin oxide layer in such an oxidative cleavage process fosters the potential of this methodology for the design of effective long-chain polyhydroxyester coatings on ETP.


2020 ◽  
Vol 10 (8) ◽  
pp. 2656 ◽  
Author(s):  
Amani Khaskhoussi ◽  
Luigi Calabrese ◽  
Edoardo Proverbio

In this work, a two-stage methodology to design super-hydrophobic surfaces was proposed. The first step consists of creating a rough nano/micro-structure and the second step consists of reducing the surface energy using octadecyltrimethoxysilane. The surface roughening was realized by three different short-term pretreatments: (i) Boiling water, (ii) HNO3/HCl etching, or (iii) HF/HCl etching. Then, the surface energy was reduced by dip-coating in diluted solution of octadecyltrimethoxysilane to allow the formation of self-assembled silane monolayers on a 6082-T6 aluminum alloy surface. Super-hydrophobic aluminum surfaces were investigated by SEM-EDS, FTIR, profilometry, and contact and sliding angles measurements. The resulting surface morphologies by the three approaches were structured by a dual hierarchical nano/micro-roughness. The surface wettability varied with the applied roughening pretreatment. In particular, an extremely high water contact angle (around 180°) and low sliding angle (0°) were evidenced for the HF/HCl-etched silanized surface. The results of electrochemical tests demonstrate a remarkable enhancement of the aluminum alloy corrosion resistance through the proposed superhydrophobic surface modifications. Thus, the obtained results evidenced that the anti-wetting behavior of the aluminum surface can be optimized by coupling an appropriate roughening pretreatment with a self-assembled silane monolayer deposition (to reduce surface energy) for anticorrosion application.


2011 ◽  
Vol 239-242 ◽  
pp. 2270-2273 ◽  
Author(s):  
Yong Feng Luo ◽  
Hai Yan Lang ◽  
Jin Liang ◽  
Guo Sheng Peng ◽  
You Hua Fan ◽  
...  

A facial chemical etching method was developed for fabricating stable super-hydrophobic surfaces on aluminum alloy foils. The microstructure and wettability of super-hydrophobic surfaces were characterized by scanning electron microscopy, water contact angle (CA) measurement, and optical methods. The surfaces of the modified aluminum alloy substrates exhibit superhydrophobicity, with a CA of 164.8°±1.6° and a water sliding angle of about 5°. The etched surfaces have binary structure consisting of the irregular microscale plateaus and caves in which there are the nanoscale block-like convexes and hollows.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1642
Author(s):  
Haiqing Fu ◽  
Shuo Liu ◽  
Lanlin Yi ◽  
Hong Jiang ◽  
Changjiu Li ◽  
...  

Herein, a superhydrophobic surface with superior durability was fabricated on a glass-ceramic surface by crystallization, hydrofluoric acid (HF) etching, and surface grafting. The as-prepared glass-ceramic surface was composed of three-dimensional flower-like micro-clusters, which were self-assembled from numerous nanosheets. Such a dual-scale rough surface exhibited superhydrophobicity, with a water contact angle (WCA) of 170.3° ± 0.1° and a sliding angle (SA) of ~2° after grafting with 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (FAS-17). This can be attributed to the synergistic effect between the dual-scale structure and surface chemistry. Furthermore, this surface exhibited excellent self-cleaning properties, stability against strong acid and strong alkali corrosion, and anti-stripping properties.


Sign in / Sign up

Export Citation Format

Share Document