Modal Analysis for the Framework of Beam Pumping Unit Based on Solidworks Simulation

2013 ◽  
Vol 318 ◽  
pp. 39-43 ◽  
Author(s):  
Qiang Wang ◽  
Jian Fu Xiao

The framework is the main load bearing part of beam pumping unit. Its vibration performance has an important effect on the stability and reliability of beam pumping unit. This article takes the beam pumping unit (API C-228D-173-74) as an example, carries out the modal analysis in the environment of Solidworks Simulation, and obtains the first 6 orders of modal shapes and natural frequencies of the prestressed framework. This article clarifies the key technology of how to build the solid modal and how to apply load and constraints. The analysis result of the modal shows that the lowest frequency of the pumping unit framework (API C-228D-173-74) is 22.39Hz, which may be most likely resonant with the motor. We can adjust the rotate speed of the motor to avoid resonance. At the same time, the stiffness of the front legs is insufficient, suitable strengthen measures should be taken.

2012 ◽  
Vol 605-607 ◽  
pp. 1224-1229
Author(s):  
Yuan Huang ◽  
Ji Fei Cai ◽  
Run Xie

Variable head sizes of paper roll will influence the stability of paper feeding device and hence the printing quality. Therefore, it is necessary to improve the printing quality by improving the stability of paper feeding device based on dynamic analysis on the phenomenon of variable head sizes of paper roll. It is found through dynamic analysis that the effect of variable head sizes on the support force of bearings is nearly five times that of the case when such effect does not exist. Vibration performance analysis of paper feeding device using finite element analysis obtains the natural frequencies of the first 6 orders for paper carriage and their dominant vibrational modes. This provides theoretical basis for the improvement of paper feeding device.


2013 ◽  
Vol 303-306 ◽  
pp. 2784-2789
Author(s):  
Long Xue Qiao ◽  
Yao Hua Du ◽  
Feng Chen ◽  
Zhi Cheng ◽  
Chao Li ◽  
...  

An ultrasonication system for cells disruption is developed to extract nucleic acid from cells. The structure and operating principle of the ultrasonication system are explained, after which the key problems are stated. Based on finite element modal analysis, the top-ten natural frequencies of the round-shaped vibrating diaphragm are found having a character of stepped distribution, which can be divided into three grades. To optimize the vibration performance of vibrating diaphragm, simulation based on ANSYS is performed, the results of which show that medium grade frequency decreases with the increase of diameter while increases linearly with the increase of thickness.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Emre Dikmen ◽  
Peter J. M. van der Hoogt ◽  
André de Boer ◽  
Ronald G. K. M. Aarts

In Part I of this work, a theoretical analysis showed that the surrounding air in the closed confinement between rotor and casing has a significant effect on the dynamic behavior of high speed minirotors. In order to validate the developed theoretical model, an experimental setup is designed and the dynamic behavior of the rotor with medium gap confinement is studied. The experimental setup has flexible supports, which consist of beams with adjustable length. The support stiffness is changed by altering the beam length. Modal analysis of the rotor is done in free-free conditions in order to test the capability of the rotordynamic model without the supports and multiphysical effects. The experimental and simulation results agree well with a difference of 1%. Then modal analysis of the whole structure is done at standstill and during operation in the absence of the casing. In this way, multiphysical effects are eliminated and only support effects on the dynamics of the structure are observed. The supports appear to have significant effect on the natural frequencies of the flexural modes of the system. Different support modeling techniques are studied and adequate equivalent models are obtained. These models are then implemented into the structural model of the rotor. Finally, multiphysical effects are tested at different speeds with different support stiffnesses. Experiments are performed with and without the casing for determining the change in the natural frequencies and onset of instability. The surrounding fluid has a significant effect on the stability of the system while the natural frequencies do not change significantly. The experimental and theoretical results are in fair agreement for predicting the natural frequencies and the onset of instability.


2009 ◽  
Vol 626-627 ◽  
pp. 471-476 ◽  
Author(s):  
M. Cong ◽  
T.J. Wang ◽  
Cheng Shuang Zhang

To attain the optimal shape of the robot arm with the minimum compliance and the suitable weight and lower the possibility of vibration, this paper applies the homogenization method to describe the topology optimization design of the wafer handling robot arm which modal analysis is carried out subsequently. We deduce and establish the mathematical model of the topology optimization based on the homogenization method and calculate it by ANSYS. The results suggested that the compliance and the weight were reduced. Then we calculated the modal analysis of the optimized and non-optimized robot arms, and it was found that the first sixth natural frequencies of the optimized robot arm all increased whereas the probability of the natural vibration declined. It is concluded that the topology optimization design of the wafer handling robot has been shown to be effective in improving the stability of the robot arm.


2021 ◽  
pp. 0309524X2110116
Author(s):  
Oumnia Lagdani ◽  
Mostapha Tarfaoui ◽  
Mourad Nachtane ◽  
Mourad Trihi ◽  
Houda Laaouidi

In the far north, low temperatures and atmospheric icing are a major danger for the safe operation of wind turbines. It can cause several problems in fatigue loads, the balance of the rotor and aerodynamics. With the aim of improving the rigidity of the wind turbine blade, composite materials are currently being used. A numerical work aims to evaluate the effect of ice on composite blades and to determine the most adequate material under icing conditions. Different ice thicknesses are considered in the lower part of the blade. In this paper, modal analysis is performed to obtain the natural frequencies and corresponding mode shapes of the structure. This analysis is elaborated using the finite element method (FEM) computer program through ABAQUS software. The results have laid that the natural frequencies of the blade varied according to the material and thickness of ice and that there is no resonance phenomenon.


Author(s):  
Radka JÍROVÁ ◽  
Lubomír PEŠÍK

Vibroisolation systems of base desks for machine and testing facilities usually cannot effect efficient changing of their own frequencies according to operating conditions. Especially in the case of the automotive industry, the possibility of changing natural frequencies is very desirable. During varying operating conditions, the vibroisolation system needs to be regulated easily and quickly regarding the minimisation of dynamical forces transmitted to the ground and to ensure the stability of the testing process. This paper describes one of the options of tuning the base desk at a relatively short time and by sufficient change of own frequencies, which decides the dynamical behaviour of the whole system.


2011 ◽  
Vol 2-3 ◽  
pp. 1018-1020
Author(s):  
De Chen Zhang ◽  
Yan Ping Sun

Finite element method and structural mechanics method are used to study the blast furnace shell modal analysis and the natural frequencies and mode shapes have been calculated. The two methods were compared and validated , and the results provide a theoretical foundation for the anti-vibration capabilities design of blast furnace shell in the future .


2018 ◽  
Vol 217 ◽  
pp. 02001
Author(s):  
Mohd Hafiz Abdul Satar ◽  
Ahmad Zhafran Ahmad Mazlan

Hysteresis is one of the non-linearity characteristics of the piezoelectric material. This characteristic is important to be characterized since it can affect the performance of the piezoelectric material as sensor or actuator in many applications. In this study, the model of the coupled aluminium beam with single piezoelectric patch material is constructed to investigate the hysteresis effect of the piezoelectric material to the whole beam structure. A P-876 DuraActTM type piezoelectric patch material is used in modelling of the piezoelectric actuator. Firstly, the modal analysis of the coupled beam-piezoelectric actuator is determined to get the natural frequencies and mode shapes. Then, the piezoelectric patch material is investigated in terms of actuator by given a sinusoidal voltage excitation and output in terms of deflection, stress and strain of the piezoelectric actuator are investigated. From the results, it is clear that, the coupled beam-piezoelectric material is affected by the hysteresis of the piezoelectric material and the natural frequencies of the beam structure. This characteristic is important for the piezoelectric actuator manufacturer and by providing the correction algorithm, it can improve the performance of the piezoelectric actuator for many applications.


2013 ◽  
Vol 651 ◽  
pp. 710-716 ◽  
Author(s):  
Omar Gaber ◽  
Seyed M. Hashemi

The effects of spindles vibrational behavior on the stability lobes and the Chatter behavior of machine tools have been established. The service life has been observed to reducethe system natural frequencies. An analytical model of a multi-segment spinning spindle, based on the Dynamic Stiffness Matrix (DSM) formulation, exact within the limits of the Euler-Bernoulli beam bending theory, is developed. The system exhibits coupled Bending-Bending (B-B) vibration and its natural frequencies are found to decrease with increasing spinning speed. The bearings were included in the model usingboth rigid, simply supported, frictionless pins and flexible linear spring elements. The linear spring element stiffness is then calibrated so that the fundamental frequency of the system matches the nominal value.


2013 ◽  
Vol 12 (2) ◽  
pp. 205-212
Author(s):  
Daniel Burkacki ◽  
Michał Wójcik ◽  
Robert Jankowski

In technical branches, such as chemical or petroleum industries, cylindrical steel tanks are essential structures used for storage of liquid products. Therefore, their safety and reliability is essential, because any failure might have dangerous consequences, in extreme cases may even lead to an environmental disaster. The aim of the presented paper is to show the results of the modal analysis concerning the cylindrical steel tank with self-supported roof which has been constructed in northern Poland. The investigation was carried out with the use of the FEM commercial computer program Abaqus. The values of natural frequencies, as well as the natural modes, for different levels of liquid filling (empty tank, partly filled and tank fully filled) were determined in the study. The results of the study clearly indicate that the increase in the liquid level leads to the substantial decrease in the natural frequencies of the structure.


Sign in / Sign up

Export Citation Format

Share Document