Reform of Mechanical Shaft Sealing Self-Flush System of Petrochemical Hot Oil Centrifugal Pump

2013 ◽  
Vol 331 ◽  
pp. 106-109
Author(s):  
Yan Liu ◽  
Jie Long Ren ◽  
Hui Cao

Mechanical seal leakage of centrifugal pumps (especially hot oil pumps) is the main fault reason of the petrochemical equipments. The fuction of the sealing flush system is to maintain the mechanical shaft seal function correctly. The misconduct of flush system settings will directly lead to the failure of mechanical seal. In this paper, the problems are analyzed for the present mechanical seal flushing system. When the centrifugal pump is in a standby state, flushing system may not provide normal flush flow in self-flush plan. This may lead to surface fouling of the hot mechanical shaft seal, resulting in seal failure. Our research focus on solving these problems. The way is to change the source of flush fluid, that is to change the flush plan to external flush plan or toChange the fluid pipe position.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yin Luo ◽  
Wenqi Zhang ◽  
Yakun Fan ◽  
Yuejiang Han ◽  
Weimin Li ◽  
...  

Mechanical seal is a kind of shaft sealing equipment. Face wear is one of the main causes of mechanical seal failure. Mechanical seal condition is also related to the reduction of energy consumption and carbon emission. Therefore, we need to detect the centrifugal pump seal condition. At present, vibration signal is a common method for fault monitoring and diagnosis of centrifugal pump. In this paper, the vibration signal under the condition of damaged centrifugal pump seal is measured by studying the characteristics of vibration signal after the end face damage of centrifugal pump. Statistical indicators such as RMS and kurtosis were taken to analyze the average energy and shock wave energy of vibration signal. The time-frequency characteristics of vibration signal are analyzed by frequency spectrum. The results show that there are a large extent variation of vibration amplitude in the direction of base and axis and a weak variation of vibration amplitude in the direction of radial and vertical. With the increasing of flow rate, the RMS of vibration signal falls at first, then keeps steady, and mounts at last when the flow rate is over the design flow rate. It can be shown from the time-frequency spectrum that there is a shock wave and pause signals caused by the shock wave, which are reflected by the higher frequency band components of the vibration signal that can provide a reference to the diagnosis of the occurrence of damaged mechanical seal. From the analysis, the energy of vibration signal is related to the running condition, we can find that the occurrence of mechanical seal wear makes the centrifugal pump to produce high-frequency vibration signal, and the axial vibration is the strongest and the instability in the fluid makes the vibration signal produce high amplitude characteristics. Analyzing the vibration signal characteristics of centrifugal pumps with damaged mechanical seal is of great significance to find the mechanical seal failure of the centrifugal pumps and adjust the operating parameters.


Author(s):  
Jiamin Zou ◽  
Yin Luo ◽  
Yuejiang Han ◽  
Yakun Fan

Mechanical seal failure has a great negative impact on the operation of a centrifugal pump system. A method to analyze the stator current characteristics of the motor in a centrifugal pump system is proposed to monitor the internal flow of the centrifugal pump and to identify the failure status of the mechanical seal. Experiments were conducted under different mechanical seal states. Based on sensorless technology, the stator current signal of the motor is collected, processed by windowing function, anti-aliasing filter, singular value decomposition, Hilbert–Huang transform, and the marginal spectrum of correlation quantity is drawn. The results show that according to the external characteristic curve of the centrifugal pump, after the failure of the mechanical seal, the head and efficiency of the centrifugal pump decrease, and the head is greatly affected by the degree of failure, while the degree of mechanical seal failure has little effect on the shaft power of the centrifugal pump; the centrifugal pump has good operation stability under design conditions or near slightly large flow; the stability of centrifugal pump operation decreases with the aggravation of mechanical seal failure; the corresponding maximum amplitude in the marginal spectrum can be used as an index to diagnose the damage degree of the mechanical seal.


Author(s):  
Guohui Cong ◽  
Ling Zhang

Environmental protection requirement is more and more critical now, and it increases the request to prevent dangerous liquid to leak outside in nuclear power plant too. Centrifugal pumps are the most important active equipments in nuclear power plant, but there is a shaft clearance between rotor and stator of centrifugal pump. The shaft clearance can lead pumped fluid to the outside, so the environment may be polluted by the leakage. In some critical conditions such as transferring high radioactive fluid in the pump, the leakage shall be totally forbidden. So solutions have to be found to make centrifugal pumps totally leak-free for applications in nuclear power plant. Normally there are three leak-free technologies for centrifugal pumps: mechanical seal with auxiliary system, canned motor and magnetic drive. In this paper, all the three leak-free technologies and some of their applications in EPR 3rd generation PWR nuclear power plants are presented and discussed. The results show that in EPR nuclear power plant, canned motor pumps can be preferably used for strict environmental requirement of leak-free if the pump power and operating conditions are applicable. For other conditions, pumps with double mechanical seal can also be used with additional sealing water system support. For centrifugal pumps with magnetic drive are not so applicable in high pressure condition, and the safety aspect is weaker than canned motor pumps, generally they are not used in EPR nuclear power plant at present.


2018 ◽  
Vol 1 (2) ◽  
pp. 24-39
Author(s):  
A. Farid ◽  
A. Abou El-Azm Aly ◽  
H. Abdallah

Cavitation in pumps is the most severe condition that centrifugal pumps can work in and is leading to a loss in their performance.  Herein, the effect of semi-open centrifugal pump side clearance on the inception of pump cavitation has been investigated.  The input pump pressure has been changed from 80 to 16 kPa and the pump side clearance has been changed from 1 mm to 3 mm at a rotation speed of 1500 rpm. It has been shown that as the total input pressure decreased; the static pressure inside the impeller is reduced while the total pressure in streamwise direction has been reduced, also the pump head is constant with the reduction of the total input pressure until the cavitation is reached. Head is reduced due to cavitation inception; the head is reduced in the case of a closed impeller with a percent of 1.5% while it is reduced with a percent of 0.5% for pump side clearance of 1mm, both are at a pressure of 20 kPa.   Results also showed that the cavitation inception in the pump had been affected and delayed with the increase of the pump side clearance; the cavitation has been noticed to occur at approximate pressures of 20 kPa for side clearance of 1mm, 18 kPa for side clearances of 2mm and 16 kPa for 3mm.


Author(s):  
Weihui Xu ◽  
Xiaoke He ◽  
Xiao Hou ◽  
Zhihao Huang ◽  
Weishu Wang

AbstractCavitation is a phenomenon that occurs easily during rotation of fluid machinery and can decrease the performance of a pump, thereby resulting in damage to flow passage components. To study the influence of wall roughness on the cavitation performance of a centrifugal pump, a three-dimensional model of internal flow field of a centrifugal pump was constructed and a numerical simulation of cavitation in the flow field was conducted with ANSYS CFX software based on the Reynolds normalization group k-epsilon turbulence model and Zwart cavitation model. The cavitation can be further divided into four stages: cavitation inception, cavitation development, critical cavitation, and fracture cavitation. Influencing laws of wall roughness of the blade surface on the cavitation performance of a centrifugal pump were analyzed. Research results demonstrate that in the design process of centrifugal pumps, decreasing the wall roughness appropriately during the cavitation development and critical cavitation is important to effectively improve the cavitation performance of pumps. Moreover, a number of nucleation sites on the blade surface increase with the increase in wall roughness, thereby expanding the low-pressure area of the blade. Research conclusions can provide theoretical references to improve cavitation performance and optimize the structural design of the pump.


Machines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 60
Author(s):  
Khaled Alawadhi ◽  
Bashar Alzuwayer ◽  
Tareq Ali Mohammad ◽  
Mohammad H. Buhemdi

Since centrifugal pumps consume a mammoth amount of energy in various industrial applications, their design and optimization are highly relevant to saving maximum energy and increasing the system’s efficiency. In the current investigation, a centrifugal pump has been designed and optimized. The study has been carried out for the specific application of transportation of slurry at a flow rate of 120 m3/hr to a head of 20 m. For the optimization process, a multi-objective genetic algorithm (MOGA) and response surface methodology (RSM) have been employed. The process is based on the mean line design of the pump. It utilizes six geometric parameters as design variables, i.e., number of vanes, inlet beta shroud, exit beta shroud, hub inlet blade draft, Rake angle, and the impeller’s rotational speed. The objective functions employed are pump power, hydraulic efficiency, volumetric efficiency, and pump efficiency. In this reference, five different software packages, i.e., ANSYS Vista, ANSYS DesignModeler, response surface optimization software, and ANSYS CFX, were coupled to achieve the optimized design of the pump geometry. Characteristic maps were generated using simulations conducted for 45 points. Additionally, erosion rate was predicted using 3-D numerical simulations under various conditions. Finally, the transient behavior of the pump, being the highlight of the study, was evaluated. Results suggest that the maximum fluctuation in the local pressure and stresses on the cases correspond to a phase angle of 0°–30° of the casing that in turn corresponds to the maximum erosion rates in the region.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 886
Author(s):  
Cui Dai ◽  
Chao Guo ◽  
Yiping Chen ◽  
Liang Dong ◽  
Houlin Liu

The strong noise generated during the operation of the centrifugal pump harms the pump group and people. In order to decrease the noise of the centrifugal pump, a specific speed of 117.3 of the centrifugal pump is chosen as a research object. The bionic modification of centrifugal pump blades is carried out to explore the influence of different bionic structures on the noise reduction performance of centrifugal pumps. The internal flow field and internal sound field of bionic blades are studied by numerical calculation and test methods. The test is carried out on a closed pump test platform which includes external characteristics and a flow noise test system. The effects of two different bionic structures on the external characteristics, acoustic amplitude–frequency characteristics and flow field structure of a centrifugal pump, are analyzed. The results show that the pit structure has little influence on the external characteristic parameters, while the sawtooth structure has a relatively great influence. The noise reduction effect of the pit structure is aimed at the wide-band noise, while the sawtooth structure is aimed at the discrete noise of the blade-passing frequency (BPF) and its frequency doubling. The noise reduction ability of the sawtooth structure is not suitable for high-frequency bands.


2021 ◽  
Vol 9 (2) ◽  
pp. 121
Author(s):  
Yang Yang ◽  
Ling Zhou ◽  
Hongtao Zhou ◽  
Wanning Lv ◽  
Jian Wang ◽  
...  

Marine centrifugal pumps are mostly used on board ship, for transferring liquid from one point to another. Based on the combination of orthogonal testing and numerical simulation, this paper optimizes the structure of a drainage trough for a typical low-specific speed centrifugal pump, determines the priority of the various geometric factors of the drainage trough on the pump performance, and obtains the optimal impeller drainage trough scheme. The influence of drainage tank structure on the internal flow of a low-specific speed centrifugal pump is also analyzed. First, based on the experimental validation of the initial model, it is determined that the numerical simulation method used in this paper is highly accurate in predicting the performance of low-specific speed centrifugal pumps. Secondly, based on the three factors and four levels of the impeller drainage trough in the orthogonal test, the orthogonal test plan is determined and the orthogonal test results are analyzed. This work found that slit diameter and slit width have a large impact on the performance of low-specific speed centrifugal pumps, while long and short vane lap lengths have less impact. Finally, we compared the internal flow distribution between the initial model and the optimized model, and found that the slit structure could effectively reduce the pressure difference between the suction side and the pressure side of the blade. By weakening the large-scale vortex in the flow path and reducing the hydraulic losses, the drainage trough impellers obtained based on orthogonal tests can significantly improve the hydraulic efficiency of low-specific speed centrifugal pumps.


1978 ◽  
Vol 100 (4) ◽  
pp. 395-409 ◽  
Author(s):  
Jaroslaw Mikielewicz ◽  
David Gordon Wilson ◽  
Tak-Chee Chan ◽  
Albert L. Goldfinch

The semiempirical method described combines the ideal performance of a centrifugal pump with experimental data for single and two-phase flow to produce a so-called “head-loss ratio,” which is the apparent loss of head in two-phase flow divided by the loss of head in single-phase flow. This head-loss ratio is shown to be primarily a function of void fraction. It is demonstrated that the measured characteristics of a centrifugal pump operating in two-phase flow in normal rotation and normal and reversed flow directions (first and second -quadrant operation) and in reversed rotation and reversed flow direction (third-quadrant operation) can be reproduced with acceptable accuracy.


2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


Sign in / Sign up

Export Citation Format

Share Document