Design and Comparison of Catenary and Taut Mooring Systems for New Concept FPSO IQFP in Shallow Waters

2013 ◽  
Vol 353-356 ◽  
pp. 2670-2675 ◽  
Author(s):  
Tian Ying Wang ◽  
Li Jun Yang ◽  
Zhi Gang Xu ◽  
Jin Kun Liu

In order to design an effective and economical multi-point mooring system for the new concept FPSO IQFP (fillet inverted quadrangular frustum pyramid shaped FPSO, presented by the lead author), the effects of the mooring parameters on the performance of catenary mooring system and taut mooring system were investigated according to the initial design plans given in advance according to the steady environment forces and practical experiences. Then, the optimal mooring systems were developed on the basis of the static analysis results combined with the coupled calculations in time domain. Finally, the merits and demerits of the two mooring schemes were compared based on the mooring and static characteristic parameters as well as the curves of restoring force against horizontal displacement of the catenary and taut mooring systems respectively. The results verify that the taut mooring system is preferable to the catenary mooring system for IQFP deployed in shallow waters.

Author(s):  
Hongwei Wang ◽  
Zizhao Zhang ◽  
Gang Ma ◽  
Rongtai Ma ◽  
Jie Yang

Abstract Select the common mooring system-soft yoke mooring system as the research object. The soft yoke mooring system is regarded as a structure composed of multiple rigid bodies, and the theoretical analysis of multi-body dynamics is used to discuss the interaction of multi-rigid bodies. The classical HYSY113 FPSO is selected as an example, for the soft yoke mooring system, the stiffness characteristics and static restoring force curved compared with those of software OrcaFlex, and they are in good agreement, which verify the reliability of the formula derived, and it is a prerequisite for the accurate simulations in further steps. Coupled analysis to the whole system in time domain is also carried out both in OrcaFlex and AQWA, and the representative response of the FPSO under different environmental conditions is compared, the results are consistent well with each other. It is a good reference for the future study in this field. Good static characteristics are a prerequisite for accurate analysis of time-domain motion. By comparing the results in the time domain, it is found that under the same working conditions, the analysis results calculated by different commercial software (AQWA and OrcaFlex) may be different. We need to perform design analysis based on the characteristics of the software.


2021 ◽  
Vol 9 (7) ◽  
pp. 782
Author(s):  
Francesco Depalo ◽  
Shan Wang ◽  
Sheng Xu ◽  
C. Guedes Soares

The objective of this work is to develop an efficient method to carry out the preliminary design of the mooring system for a wave energy converter. A practical mooring design procedure is applied to a specific case of study, and it can be replicated for other cases. Firstly, the static analysis is performed for a configuration with three mooring cables with different pre-tensions on fairlead, diameters of the cables, and materials. Based on these configurations from the static analysis, a quasi-static analysis is carried out in the frequency domain and a preliminary design is conducted according to DNV rules. Then, a 3-h dynamic analysis in the time domain is performed on several selected configurations, considering the same environmental conditions in the quasi-static analysis using the finite element method. Extreme dynamic responses of the system, such as extreme surge motion and mooring tensions, are estimated by the global maximum method, which is performed by fitting 20 individual maximum observations by Gumbel distribution. The quasi-static method is validated by comparing the results of extreme tension and displacement with the coupled time domain analysis. In addition, the influence of pre-tensions and cable diameters on the static and dynamic responses of the mooring system are discussed.


2021 ◽  
Vol 9 (6) ◽  
pp. 581
Author(s):  
Hongrae Park ◽  
Sungjun Jung

A cost-effective mooring system design has been emphasized for traditional offshore industry applications and in the design of floating offshore wind turbines. The industry consensus regarding mooring system design is mainly inhibited by previous project experience. The design of the mooring system also requires a significant number of design cycles. To take aim at these challenges, this paper studies the application of an optimization algorithm to the Floating Production Storage and Offloading (FPSO) mooring system design with an internal turret system at deep-water locations. The goal is to minimize mooring system costs by satisfying constraints, and an objective function is defined as the minimum weight of the mooring system. Anchor loads, a floating body offset and mooring line tensions are defined as constraints. In the process of optimization, the mooring system is analyzed in terms of the frequency domain and time domain, and global and local optimization algorithms are also deployed towards reaching the optimum solution. Three cases are studied with the same initial conditions. The global and local optimization algorithms successfully find a feasible mooring system by reducing the mooring system cost by up to 52%.


2000 ◽  
Vol 123 (4) ◽  
pp. 645-650 ◽  
Author(s):  
Gaetan Kerschen ◽  
Vincent Lenaerts ◽  
Stefano Marchesiello ◽  
Alessandro Fasana

The present paper aims to compare two techniques for identification of nonlinear dynamical systems. The Conditioned Reverse Path method, which is a frequency domain technique, is considered together with the Restoring Force Surface method, a time domain technique. Both methods are applied for experimental identification of wire rope isolators and the results are compared. Finally, drawbacks and advantages of each technique are underlined.


Author(s):  
Mo Fan ◽  
Da Li ◽  
Tuanjie Liu ◽  
Alex Ran ◽  
Wei Ye

An octagonal FPSO has been proposed for marginal oil and gas development in shallow waters. A shuttle tanker will be deployed near the FPSO during offloading operations. This new concept simplifies the design and manufacturing processes, yet maintains full production, storage, and offloading functions of a conventional ship-shaped FPSO. However, design of the mooring system for this floating unit imposes technical challenges due to: 1) high environmental loads expected on this unit, 2) large dynamic offsets of the unit in shallow waters, and 3) inadequate performance of catenary mooring systems in shallow waters. Thus, development of a viable station keeping solution becomes a key issue to the new concept FPSO design. In this paper, an innovative mooring system is designed to meet the challenges. The FPSO mooring system consists of pile anchors, bridle chains, anchorage buoys, and polyester ropes. Nine mooring lines are grouped into three bundles which evenly spread around the FPSO. The shuttle tanker is attached to the FPSO with a nylon rope hawser at the bow and secured to pre-installed anchorage buoys at the stern with two other nylon ropes. Analyses have been performed for the FPSO mooring system. It is concluded that the proposed mooring system is fully functional and effective.


1997 ◽  
Vol 41 (04) ◽  
pp. 286-300
Author(s):  
Jinzhu Xia ◽  
Zhaohui Wang

A time-domain linear theory of fluid-structure interaction between floating structures and the incident waves is presented. The structure is assumed to be elastic and represented by general separation of variables, whereas the fluid is described as an initial boundary value problem of potential free surface flow. The general interface boundary condition is used in the mathematical formulation of the fluid motion around the flexible structure. The general time-domain theory is simplified to a slender-body theory for the analysis of wave-induced global responses of monohull ships. The structure is represented by a nonuniform beam, while the generalized hydrodynamic coefficients can be obtained from two-dimensional potential flow theory. The linear slender body theory is generalized to treat the nonlinear loading effects of rigid motion and structural response of ships traveling in rough seas. The nonlinear hydrostatic restoring force and hydrodynamic momentum action are considered. A numerical solution is presented for the slender body theory. Numerical examples are given for two ship cases with different geometry features, a warship hull and the S175 containership with two different bow flare forms. The predicted results include linear and nonlinear rigid motions and structural responses of ships advancing in regular and irregular waves. The results clearly demonstrate the importance and the magnitude of nonlinear effects in ship motions and internal forces. Numerical calculations are compared with experimental results of rigid and elastic material ship model tests. Good agreement is obtained.


Author(s):  
Spiro J. Pahos ◽  
Georgina Maldonado ◽  
Paul C. Westlake

Abstract Traditionally mooring line strength assessment is based on a deterministic approach, where the mooring system is evaluated for a design environment defined by a return period. The mooring system response is then checked against the mooring strength to ensure a required factor of safety. Some codes adopt a deterministic approach [1], [2], [3]. Other codes like [4] adopt a partial safety factor format where uncertainties are addressed through load factors for load components and material factors for line strength. Industry practices give guidance on mooring analysis methodology together with analysis options like coupled, de-coupled, time domain, frequency domain and the associated line tension safety factors. Prior work has demonstrated that discrepancies in mooring line tensions are observed when different analytical approaches are used [5]. Namely, the mooring line tensions of a semi-submersible unit in a coupled time domain analysis, were found to be non-compliant, whereas those calculated using a decoupled time domain analysis returned compliant tensions. This work focuses on a coupled dynamic analysis where all inertial, hydrodynamic and mechanical forces are assessed to determine the subsequent motions. Despite being considered the most accurate to capture the true dynamic response, a coupled analysis is also the least efficient in terms of the required computer resources and engineering effort [1]. This paper presents further discussion on the above observation in mooring tensions and also considers differences in the installation’s excursion. All responses are evaluated in the time domain where the nonlinear dynamic behavior of the mooring lines, slowly varying wave drift forces and coupling effects are captured. Agreement is found in the present computations, carried out with two renowned hydrodynamic codes, which validate former results and reiterate the need to distinguish between time domain methods and recommended appropriate safety factors accordingly.


Author(s):  
Xuliang Han ◽  
ShiSheng Wang ◽  
Bin Xie ◽  
Wenhui Xie ◽  
Weiwei Zhou

In order to predict the coupled motion and external wave load for the design of deepwater floating structure system, based on the three-dimensional time-domain potential flow theory, this paper present the indirect time-domain dynamic coupling method and the body nonlinear dynamic coupling method. The perturbation expansion theory is adopted to evaluate hydrodynamic on the fixed mean wetted body surface for the former method. The transient free surface Green function has been extended and applied to calculate the nonlinear hydrodynamic on the instantaneous wetted exact body surface for the latter method. The finite element model is employed to solve dynamic response of mooring line. Then asynchronous coupled method is adopted to achieve the coupled dynamic analysis of platform and mooring lines. The time-domain motion responses and spectrum analysis of Spar platform are verified and compared with the traditional indirect time-domain coupling dynamic method when the mooring system is completed. Also the time-domain motion responses and statistical characteristic of Spar platform are investigated with one mooring line broken in extreme sea condition. Some conclusions are obtained, that is, dynamic coupling effects are significant and transient position hydrodynamic calculation of platform has a great influence on the low frequency motion. The results also show that the influence on the global performance of mooring system is different when the broken line is in different place. A remarkable influence occurs when the broken mooring line is in the head-wave direction.


2019 ◽  
Vol 9 (2) ◽  
pp. 240 ◽  
Author(s):  
Jialong Jiao ◽  
Yong Jiang ◽  
Hao Zhang ◽  
Chengjun Li ◽  
Chaohe Chen

In this paper, the hydroelastic motion and load responses of a large flexible ship sailing in irregular seaways are predicted and the hull girder ultimate strength is subsequently evaluated. A three-dimensional time-domain nonlinear hydroelasticity theory is developed where the included nonlinearities are those arising from incident wave force, hydrostatic restoring force and slamming loads. The hull girder structure is simplified as a slender Timoshenko beam and fully coupled with the hydrodynamic model in a time domain. Segmented model towing-tank tests are then conducted to validate the proposed hydroelasticity theory. In addition, short-term and long-term predictions of ship responses in irregular seaways are conducted with the help of the developed hydroelastic code in order to determine the extreme design loads. Finally, a simplified strength-check equation is proposed, which will provide significant reference and convenience for ship design and evaluation. The hull girder ultimate strength is assessed by both the improved Rule approach and direct calculation.


2014 ◽  
Vol 945-949 ◽  
pp. 1090-1093
Author(s):  
Hai Peng Zhang ◽  
Hong Wu Chen ◽  
Bin Hu ◽  
Cheng Tian

This paper simulated the unbalance vibration conditions by the vibration test platform, measuring some common characteristic parameters of unbalance vibration fault diagnosis. This paper chose the time-domain analysis method, processing the characteristic parameters of the test, so as to achieve the purpose of vibration diagnosis. Through a large number of experimental data, this paper verified the feasibility and the effectiveness of the proposed approach to the unbalance fault diagnosis. The method proposed in this paper not only can be applied to unbalance fault diagnosis, but also can be promoted to apply to the fault diagnosis of other rotating machinery.


Sign in / Sign up

Export Citation Format

Share Document