Application of Porous Chitosan/Gelatin Bone Scaffolds Used in Bone Tissue Engineering

2013 ◽  
Vol 365-366 ◽  
pp. 1050-1053 ◽  
Author(s):  
Ching Wen Lou ◽  
Shih Peng Wen ◽  
Hsiu Ying Chung ◽  
Chao Tsang Lu ◽  
Jia Horng Lin

Chitosan (CS) and gelatin (G) both have good biocompatibility and biodegradation, qualifying them for use in tissue engineering. In this study, CS and G are blended with different ratios to make the mixture solution, and then freeze-dried to form three-dimensional porous CS/G bone scaffolds. The surface, cross-section, porosity, and pore size of the resulting bone scaffolds are observed and analyzed. According to the experimental results, the addition of gelatin gives the CS/G bone scaffolds morphology with few pores. As can be seen from SEM observation, there are linear pores in the cross-section. In addition, with a larger quantity of gelatin, the CS/G bone scaffolds have a lower porosity.

2019 ◽  
Vol 33 (8) ◽  
pp. 1128-1144 ◽  
Author(s):  
Vahideh Raeisdasteh Hokmabad ◽  
Soodabeh Davaran ◽  
Marziyeh Aghazadeh ◽  
Reza Rahbarghazi ◽  
Roya Salehi ◽  
...  

The major challenge of tissue regeneration is to develop three dimensional scaffolds with suitable properties which would mimic the natural extracellular matrix to induce the adhesion, proliferation, and differentiation of cells. Several materials have been used for the preparation of the scaffolds for bone regeneration. In this study, novel ethyl cellulose-grafted-poly (ɛ-caprolactone) (EC-g-PCL)/alginate scaffolds with different contents of nano-hydroxyapatite were prepared by combining electrospinning and freeze-drying methods in order to provide nanofibrous/macroporous structures with good mechanical properties. For this aim, EC-g-PCL nanofibers were obtained with electrospinning, embedded layer-by-layer in alginate solutions containing nano-hydroxyapatite particles, and finally, these constructions were freeze-dried. The scaffolds possess highly porous structures with interconnected pore network. The swelling, porosity, and degradation characteristics of the EC-g-PCL/alginate scaffolds were decreased with the increase in nano-hydroxyapatite contents, whereas increases in the in-vitro biomineralization and mechanical strength were observed as the nano-hydroxyapatite content was increased. The cell response to EC-g-PCL/alginate scaffolds with/or without nano-hydroxyapatite was investigated using human dental pulp stem cells (hDPSCs). hDPSCs displayed a high adhesion, proliferation, and differentiation on nano-hydroxyapatite-incorporated EC-g-PCL/alginate scaffolds compared to pristine EC-g-PCL/alginate scaffold. Overall, these results suggested that the EC-g-PCL/alginate-HA scaffolds might have potential applications in bone tissue engineering.


Author(s):  
Bingbing Li ◽  
Bani Davod Hesar ◽  
Yiwen Zhao ◽  
Li Ding

Pore size, external shape, and internal complexity of additively manufactured porous titanium scaffolds are three primary determinants of cell viability and structural strength of scaffolds in bone tissue engineering. To obtain an optimal design with the combination of all three determinants, four scaffolds each with a unique topology (external geometry and internal structure) were designed and varied the pore sizes of each scaffold 3 times. For each topology, scaffolds with pore sizes of 300, 400, and 500 µm were designed. All designed scaffolds were additively manufactured in material Ti6Al4V by the direct metal laser melting machine. Compression test was conducted on the scaffolds to assure meeting minimum compressive strength of human bone. The effects of pore size and topology on the cell viability of the scaffolds were analyzed. The 12 scaffolds were ultrasonically cleaned and seeded with NIH3T3 cells. Each scaffold was seeded with 1 million cells. After 32 days of culturing, the cells were fixed for their three-dimensional architecture preservation and to obtain scanning electron microscope images.


2015 ◽  
Vol 21 (6) ◽  
pp. 716-724 ◽  
Author(s):  
Ramakrishna Vasireddi ◽  
Bikramjit Basu

Purpose – The purpose of this paper is to investigate the possibility to construct tissue-engineered bone repair scaffolds with pore size distributions using rapid prototyping techniques. Design/methodology/approach – The fabrication of porous scaffolds with complex porous architectures represents a major challenge in tissue engineering and the design aspects to mimic complex pore shape as well as spatial distribution of pore sizes of natural hard tissue remain unexplored. In this context, this work aims to evaluate the three-dimensional printing process to study its potential for scaffold fabrication as well as some innovative design of homogeneously porous or gradient porous scaffolds is described and such design has wider implication in the field of bone tissue engineering. Findings – The present work discusses biomedically relevant various design strategies with spatial/radial gradient in pore sizes as well as with different pore sizes and with different pore geometries. Originality/value – One of the important implications of the proposed novel design scheme would be the development of porous bioactive/biodegradable composites with gradient pore size, porosity, composition and with spatially distributed biochemical stimuli so that stem cells loaded into scaffolds would develop into complex tissues such as those at the bone–cartilage interface.


2011 ◽  
Vol 56 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Suzana C.C.C. Miranda ◽  
Gerluza A.B. Silva ◽  
Rafaela C.R. Hell ◽  
Maximiliano D. Martins ◽  
José B. Alves ◽  
...  

2013 ◽  
Vol 457-458 ◽  
pp. 44-48 ◽  
Author(s):  
Jia Horng Lin ◽  
Shih Peng Wen ◽  
Hsiu Ying Chung ◽  
Wen Cheng Chen ◽  
Ching Wen Lou

Freeze-drying method can create three-dimensional, porous structure bone scaffolds, the pore size of which can be changed by a cross-linking agent. This study dissolves chitosan powder in a 1 v/v % acetic acid aqueous solution to form a 2 w/v% chitosan solution. The chitosan solution and a 4 w/v % gelatin aqueous solution are blended to form Chitosan/Gelatin mixture, after which the mixture is frozen at-20 °C for 1 hour, removed, and cross-linked with a 0.5 v/v % 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) solution for different durations. The cross-linked mixture is frozen at-20 °C for 1 hour and then freeze-dried for 24 hours to form Chitosan/Gelatin composite bone scaffolds. A stereomicroscope and a scanning electron microscopes (SEM) and Image Pro Plus are used to observe the surface and pore size of the bond scaffolds, and in vitro evaluates their biocompatibility. The experiment results show that resulting bone scaffolds possess a uniform pore distribution a desirable biocompatibility.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2074 ◽  
Author(s):  
Ana R. Bastos ◽  
Lucília P. da Silva ◽  
F. Raquel Maia ◽  
Sandra Pina ◽  
Tânia Rodrigues ◽  
...  

The development of bioactive and cell-responsive materials has fastened the field of bone tissue engineering. Gellan gum (GG) spongy-like hydrogels present high attractive properties for the tissue engineering field, especially due to their wide microarchitecture and tunable mechanical properties, as well as their ability to entrap the responsive cells. Lactoferrin (Lf) and Hydroxyapatite (HAp) are bioactive factors that are known to potentiate faster bone regeneration. Thus, we developed an advanced three-dimensional (3D) biomaterial by integrating these bioactive factors within GG spongy-like hydrogels. Lf-HAp spongy-like hydrogels were characterized in terms of microstructure, water uptake, degradation, and concomitant release of Lf along the time. Human adipose-derived stem cells (hASCs) were seeded and the capacity of these materials to support hASCs in culture for 21 days was assessed. Lf addition within GG spongy-like hydrogels did not change the main features of GG spongy-like hydrogels in terms of porosity, pore size, degradation, and water uptake commitment. Nevertheless, HAp addition promoted an increase of the pore wall thickness (from ~13 to 28 µm) and a decrease on porosity (from ~87% to 64%) and mean pore size (from ~12 to 20 µm), as well as on the degradability and water retention capabilities. A sustained release of Lf was observed for all the formulations up to 30 days. Cell viability assays showed that hASCs were viable during the culture period regarding cell-laden spongy-like hydrogels. Altogether, we demonstrate that GG spongy-like hydrogels containing HAp and Lf in high concentrations gathered favorable 3D bone-like microenvironment with an increased hASCs viability with the presented results.


2004 ◽  
Vol 845 ◽  
Author(s):  
Tao Jiang ◽  
Cyril M. Pilane ◽  
Cato T. Laurencin

ABSTRACTThree dimensional (3-D) scaffolds with appropriate mechanical properties play a significant role in scaffold-based tissue engineering. Chitosan, a natural polymer obtained from chitin, which forms a major component of crustacean exoskeleton, is a potential candidate for bone tissue engineering due to its excellent osteocompatibility and biodegradability. The aim of the present study is to develop 3-D porous chitosan scaffolds with mechanical properties in the range of trabecular bone as scaffolds for bone tissue engineering. Three dimensional scaffolds were prepared by sintering chitosan microspheres. Chitosan microspheres were prepared by ionotropic gelation of chitosan solution using sodium tripolyphosphate. It has been found that the microsphere size increased significantly with the increase of the concentration of chitosan solution. The microspheres were then sintered together using the synergetic effect of solvent and temperature. The compressive moduli of the 3-D sintered matrices were found to be in the mid range of trabecular bone. The osteocompatibility and osteoconductivity of the 3-D matrices were demonstrated by adhesion and proliferation of MC3T3-E1 osteoblast like cells on the matrices after 14 days in culture.


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


Sign in / Sign up

Export Citation Format

Share Document