Analyze the Impact of the Thin-Walled Hollow Pier by Construction of Reservoir

2013 ◽  
Vol 438-439 ◽  
pp. 1262-1264
Author(s):  
Ke Dong Tang ◽  
Feng Gui Jin

The river dam intends to build at 280m downstream of a built bridge. This paper, using ANSYS finite element software, establishes a rational and realistic model to analyze the influence of the reservoir construction on the thin-walled hollow pier of built bridge. The variation of the stress of the bridge thin-walled hollow pier before and after impounding of the reservoir is given out, which can be as a guidance for future reinforcing the thin-walled hollow pier.

2021 ◽  
Vol 9 ◽  
Author(s):  
Jiaxiang Li ◽  
Biao Wang ◽  
Jian Sun ◽  
Shuhong Wang ◽  
Xiaohong Zhang ◽  
...  

Ice shedding causes transmission lines to vibrate violently, which induces a sharp increase in the longitudinal unbalanced tension of the lines, even resulting in the progressive collapse of transmission towers in serious cases, which is a common ice-based disaster for transmission tower-line systems. Based on the actual engineering characteristics of a 500 kV transmission line taken as the research object, a finite element model of a two-tower, three-line system is established by commercial ANSYS finite element software. In the modeling process, the uniform mode method is used to introduce the initial defects, and the collapse caused by ice shedding and its influencing parameters are systematically studied. The results show that the higher the ice-shedding height is, the greater the threat of ice shedding to the system; furthermore, the greater the span is, the shorter the insulator length and the greater the dynamic response of the line; the impact of ice shedding should be considered in the design of transmission towers.


Author(s):  
John Martin

The pilger process is a cold-worked mechanical process that combines the elements of extrusion, rolling, and upsetting for the formation of thin-walled tubes. This complex manufacturing process relies on the results of trial and error testing programs, experimental parameter sensitivity studies, and prototypical applications to advance the technology. This finite element modelling effort describes the methods, models, and assumptions used to assess the process parameters used to manufacture thin-walled tubing. The modelling technique breaks down the manufacturing process into smaller computer generated models representing fundamental process functions. Each of these models is linked with the overall process simulation. Simplified assumptions are identified and supporting justifications provided. This work represents proof of principle modelling techniques, using large deformation, large strain, finite element software. These modelling techniques can be extended to more extensive parameter studies evaluating the effects of pilger process parameter changes on final tube stress and strain states and their relationship to defect formation/propagation. Sensitivity studies on input variables and the process parameters associated with one pass of the pilger process are also included. The modelling techniques have been extended to parameter studies evaluating the effects of pilger process parameter changes on tube stress and strain states and their relationship to defect formation. Eventually a complex qualified 3-D model will provide more accurate results for process evaluation purposes. However, the trends and results reported are judged adequate for examining process trends and parameter variability.


Author(s):  
Zengliang Hao ◽  
Junting Luo ◽  
Yongbo Jin ◽  
Jinheng Liu ◽  
Zhenjie Wang ◽  
...  

A one-pass annealing–internal spinning is proposed to form a conical thin-walled shell with large curved generatrix. The structure of the blank used is designed based on product-size requirements. ABAQUS finite element software is used to simulate the internal spinning process of a conical thin-walled shell with large curved generatrix under small-end (process 1) and large-end (process 2) rotations. The microstructure of the products is subsequently analyzed. Results show that the spinning pressure of the skin part under process 1 is relatively stable, and that the strain and residual stress distribution are uniform, and the hardness and the mechanical performance is improved. The products of the two processes have an obvious circumferential fiber structure. The second phase grain size in the fracture morphology of the product formed under the process 1 is uniform, and its size is in the range of 2–6 µm. Whereas, the second phase distribution of the product formed under the process 2 is not uniform, the fine second phase grain size is in 1–2 µm, and the coarse second phase grain size is in 5–8 µm.


2012 ◽  
Vol 531 ◽  
pp. 597-600
Author(s):  
Cheng Zhao ◽  
Kun Luo

According to the stress state and importance of cylindrical deputy campaign latch, NO. 2 cylindrical deputy campaign latch was selected as research subject. The work including design , processing, finite element load calculation, friction force before and after corrosion of similarity samples were carried out according to similarity theory. Friction force calculations of cylindrical deputy campaign latch before and after corrosion were 1206N and 1222N respectively. Compared with the friction force before corrosion, the friction force of cylindrical deputy campaign latch was increased by 19.1% because of seawater corrosion.


2011 ◽  
Vol 121-126 ◽  
pp. 2965-2968
Author(s):  
Cheng Zhao ◽  
Kun Luo ◽  
Chang Yin Gao

According to the stress state and corrosion resistance of bearing deputy campaigns,NO.5 bearing deputy campaign was selected as research subject.The work including design, processing, finite element load calculation, friction torque before and after corrosion of bearing deputy campaign samples were carried out according to similarity theory. Friction torque calculations of bearing deputy campaign before and after corrosion were 2.9×106N•mm and 3.2×106N•mm respectively. Compared with the friction torque before corrosion,the friction torque of bearing deputy campaign was increased by 10.4% because of seawater corrosion.


2011 ◽  
Vol 243-249 ◽  
pp. 294-297
Author(s):  
Rui Tao Zhu

Utilizing general finite element software ANSYS, the finite element computing model of the steel spatial tubular joint is built, which is used to analyze the mechanical properties under dead loads through changing its design parameters. According to the obtained and compared consequences, the different design parameters including stiffening ring thickness, cross-shaped ribbed plate thickness and stiffening ring length exert different influence on ultimate bearing capacity of the steel spatial tubular joint. Specifically, the ultimate bearing capacity under dead loads is affected by setting stiffening ring and changing cross-shaped ribbed plate thickness significantly. In contrast, if the thickness and length of stiffening ring are changed, the impact is insignificant. The results and conclusion can provide reference which is useful to optimize the design of steel spatial tubular joint in such category.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Xiongxi Wu ◽  
Qifeng Gao ◽  
Zesong Li

Based on the computer simulation technique, this paper used the professional gear design software MASTA and finite element software ANSYS combined with the method of gear micro-modification to redesign the gear profile and eventually realized the optimization design of gear micro-modification. Then the gear transmission model of one-level reducer was established to simulate and analyze the contact equivalent stress, transmission error, and meshing impact before and after gear modification. By comparing the simulations results it is found that gear micro-modification can lower meshing impact load, reduce the vibration strength, make gear transmission steady, and improve the gear bearing capacity. By comparing the transmission error curves and meshing impact load curves before and after gear micro-modification, this helps to understand the effects of gear micro-modification on the gear transmission and provides basis references for the future redesign of the marine gears with high strength and long service life.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Lian Song ◽  
Hao Hu ◽  
Jian He ◽  
Xu Chen ◽  
Xi Tu

The progressive collapse of a concrete-filled steel tubular (CFST) frame structure is studied subjected to impact loading of vehicle by the finite-element software ABAQUS, in the direct simulation method (DS) and alternate path method (AP), respectively. Firstly, a total of 14 reference specimens including 8 hollow steel tubes and 6 CFST specimens were numerically simulated under transverse impact loading for verification of finite-element models, which were compared with the existing test results, confirming the overall similarity between them. Secondly, a finite-element analysis (FEA) model is established to predict the impact behaviour of a five-storey and three-span composite frame which was composed of CFST columns and steel beams under impact vehicle loading. The failure mode, internal force-time curve, displacement-time curve, and mechanical performance of the CFST frame were obtained through analyzing. Finally, it is concluded that the result by the DS method is closer to the actual condition and the collapse process of the structure under impact load can be relatively accurately described; however, the AP method is not.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Hong-Yu Jia ◽  
Xian-Lin Lan ◽  
Nan Luo ◽  
Jian Yang ◽  
Shi-Xiong Zheng ◽  
...  

To investigate the nonlinear impact effect of multispan simply supported beam bridges under strong earthquakes, firstly, the dynamic motion equation, the algorithm of its solution, and some pounding modelling methods are presented and the finite element model of a considered multispan simply supported railway beam bridge is established in the nonlinear finite element software of SAP2000 in which the primary nonlinear characteristics of the bearing and the impact element are considered herein. Secondly, the natural vibration characteristic of the considered railway bridge is analyzed to prepare for the subsequent parameter analysis. Finally, the influence of three nonlinear parameters, i.e., stiffness of impact element, separation gap width of expansion joint, and bearing stiffness, on impact responses of bridge structures is studied. The results show that the first several modes of multispan simply supported beam bridges are mainly longitudinal and vertical vibrations. Under longitudinal seismic excitations, the large longitudinal displacement response is induced possibly and results in the collision or even unseating of superstructures at the expansion joints and abutments. The influence of separation gap width between adjacent decks on the pounding effect of bridges is greater than that of collision stiffness originated from the pounding modelling element. The impact force and pounding number run up to the maximum conditional on the collision stiffness of 9.9 × 109 (N/m) and the separation gap width of 0.14 (m). The bearing stiffness affects significantly the displacement of the pier top and the cross-sectional internal force at the bottom of piers but has little effect on the collision force and number.


2018 ◽  
Vol 63 ◽  
pp. 00008
Author(s):  
Boguslawa Kwoczynska ◽  
Izabela Piech ◽  
Rafal Wozniak

The authors aimed at showing in the publication the impact of the construction of selected water reservoirs in Poland on the surrounding environment, basing on the satellite imagery. For this purpose, for four test objects, i.e. the Dobczyce Reservoir, the Klimkow Reservoir, the Czorsztyn Reservoir and the Domaniowski Reservoir analyzes were carried out concerning the changes in the structure of land use for the state before and after reservoir construction, and indicators such as NDWI, SAVI and TSAVI were calculated. In the case of the analysis of changes in the land use structure, the direction of these changes was determined first of all, and for SAVI and TSAVI indices, the percentage change in their value and the direction of these changes were calculated.


Sign in / Sign up

Export Citation Format

Share Document