Preparation and Characterization of Conductive Filler Used for Electromagnetic Shielding Materials

2014 ◽  
Vol 492 ◽  
pp. 268-272 ◽  
Author(s):  
Rui Wang ◽  
Hui Yang ◽  
Jing Ling Wang ◽  
Zong Qing Ma ◽  
Feng Xiu Li

In present work, two conductive filler (carbon fiber with Nickel (Ni) coatings and carbon fiber with Nickel/Fe3O4 nanoparticle (Ni/Fe3O4-NPs) composite coatings) were prepared by electrodeposition. Microstructure observation indicated that the coatings were deposited uniformly on the surface of fiber. Vibrating sample magnetometer (VSM) and electromagnetic interference (EMI) shielding test showed that the two conductive filler has good saturation magnetization and EMI shielding effectiveness.The conductive filler of carbon fiber with Ni/Fe3O4-NPs composite coatings was more excellent. They are promising for application in electromagnetic shielding materials.

2019 ◽  
Vol 33 (09) ◽  
pp. 1950075
Author(s):  
Ming Gong ◽  
Qiang Li ◽  
Lin Sun ◽  
Ai-Qin Tian ◽  
Shou-Guang Sun

In this paper, a newly designed composite of magnetic nano-Co3O4 fiber coated on carbon fiber (Cf) is prepared and characterized for the electromagnetic interference (EMI) shielding properties. XRD, SEM and TEM are used to investigate the micromorphology and microstructure evolution during the preparation. By hydrothermal method, the flowerlike clusters of single crystal flake-Co(OH)2 are first obtained on Cf. The firstly prepared Co(OH)2 sheets then turn into Co3O4 fibers during the next calcination step. The continuous and loose coating of magnetic Co3O4 nanofibers is finally obtained on the Cf. The loose coating is in proportion to the weight loss, and the wirelike Co3O4 is good for the interface strength for the Cf composite preparation. Based on the above work, the loose magnetic fibers coating on the Cf could be a feasible composite structure for the EMI composite materials integrated with absorbing and reflecting.


2017 ◽  
Vol 31 (32) ◽  
pp. 1750301 ◽  
Author(s):  
Heeralal Gargama ◽  
Awalendra Kumar Thakur ◽  
Sanjay Kumar Chaturvedi

This work reports, microwave characterization of nanocrystalline nickel-polyvinylidene fluoride (n-Ni/PVDF) composites with an aim to explore their electromagnetic interference (EMI) shielding and absorption properties. The composites were fabricated using compression hot molding process at an optimum level of temperature and pressure. The electrical properties of the samples are computed using the measured scattering parameters in the X-band. The wave absorption capability of a single layer absorbing structure is theoretically evaluated by employing the computed electrical parameters. Besides, the shielding effectiveness (SE) of free standing samples are also calculated using transmission line model and compared with the experimentally obtained results to validate the theoretical model. High SE (42.87 dB) and absorption (−14.37) obtained in this work, suggest futuristic applications of n-Ni/PVDF composites for EMI shielding and wave absorption.


2012 ◽  
Vol 557-559 ◽  
pp. 1612-1617
Author(s):  
Jian An Liu ◽  
Xue Na Yang ◽  
Mei Mei Zhang ◽  
Wen He

The ferrimagnetic glass-ceramic based on SrO-Na2O-Fe2O3-FeO-P2O5-SiO2 system was prepared for hyperthermia application using aqueous aolution-melt method. Using the aqueous solution solvent evaporation, we obtained the molecular-scale homogenously glass precursor. The precursor was completely melted in a lidded platinum crucible placed in an electric furnace at 1480°C for 1h and then annealed in a furnace at 550°C for 40min.The annealed glasses were heat treated at 1050°C for 1h to obtain the glass-ceramics. The crystallization of the glass systems with different component has been systematically investigated by using XRD, TEM, as well as vibrating sample magnetometer (VSM). The glass-ceramics with P2O5=5.0wt% show a strong magnetic, which contains highest value of specific saturation magnetization of 24.89A•m2/kg.


2021 ◽  
Author(s):  
Yadong Xu ◽  
Zhiqiang Lin ◽  
Yaqi Yang ◽  
Hong-Ji Duan ◽  
Guizhe zhao ◽  
...  

Ultra-efficient electromagnetic interference (EMI) shielding composites with excellent microwave absorbing properties are the most desirable solution for eliminating microwave pollution. However, integrating absorbing and electromagnetic shielding materials is a difficult...


2017 ◽  
Vol 5 (31) ◽  
pp. 7853-7861 ◽  
Author(s):  
Jinpyo Lee ◽  
Yanan Liu ◽  
Yang Liu ◽  
Soo-Jin Park ◽  
Mira Park ◽  
...  

Lightweight, flexible, and highly conductive Cu-clad carbon fiber nonwoven fabrics were developed as superior EMI shielding materialsviafacile and controllable wet-laid and electroless technologies.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 740
Author(s):  
Yanfei Pan ◽  
Dingwen Yin ◽  
Xiaofang Yu ◽  
Nanyi Hao ◽  
Jintian Huang

The lightweight multilayer-structured electromagnetic interference shielding composite coatings with controllable electromagnetic gradient on wood surface were prepared via a simple multiple electroless copper–nickel (Cu–Ni) approach. The surface morphology, conductivity, hydrophobicity property and electromagnetic shielding effectiveness of the composite coatings were investigated. The surface roughness and conductivity of the composite coatings were enhanced with the increase in the number of depositions. The surface morphology demonstrated that the roughness was decreased with the process of multiple electroless. The coatings were compact and homogeneous as the deposition run was three. Here, the Sa (Sa illustrated Surface Roughness) value of coatings was 4.497 μm. The ideal conductivity of composite coatings can be obtained as the number of depositions was four. Electromagnetic shielding effectiveness reached average 90.69 dB in the frequency range from 300 kHz to 2.0 GHz. This study provides a new pathway for fabricating lightweight multilayer-structured electromagnetic interference shielding with controllable electromagnetic gradient and hydrophobic composite coatings-based wood.


2021 ◽  
pp. 152808372198927
Author(s):  
Peng Wang ◽  
Shuqiang Liu ◽  
Man Zhang ◽  
Gaihong Wu ◽  
Kaiwen Wang ◽  
...  

In order to alleviate the problems caused by electromagnetic pollution and simultaneously adapt to the future development trend of flexible wearable electronic equipment, it is high time to focus on the research of light weight, flexible and efficient electromagnetic interference (EMI) shielding material. A graphene aerogel composite EMI shielding composite fabric was prepared by combining graphene aerogel with fabric through the connection of waterborne polyurethane. The influence of aerogel amount on the EMI shielding function of fabric was discussed, and the waterborne polyurethane dosage on fabric mechanics and fabric style was also investigated. The result shows the composite fabric EMI shielding effectiveness reached 28 dB when the graphene aerogel amount was 25 mL (only 0.066 mL/cm2), which has satisfied the civilian requirements (20 dB). A good adhesion fastness between graphene and cotton fabric was obtained and the mechanical strength was also improved when the content of waterborne polyurethane was 20 mL. Graphene aerogel electromagnetic shielding composite fabric with good electromagnetic shielding performance and less consumption of nano carbon materials will have a good industrial application prospect.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1030 ◽  
Author(s):  
Wanshun Zhang ◽  
Hongyang Zhao ◽  
Xiaodong Hu ◽  
Dongying Ju

The microstructure, electrical conductivity, and electromagnetic interference (EMI) shielding effectiveness (SE) of CNTs/Mg Matrix composites prepared by accumulative roll bonding (ARB) were systematically investigated to understand the effects of CNTs on the electromagnetic interference shielding effectiveness property of magnesium. A model based on the shielding of the electromagnetic plane wave was used to theoretically discuss the EMI shielding mechanisms of ARB-processed composites. The experimental results indicated that the methods were feasible to prepare laminated composites. The SE of the material increased gradually with the increase of electrophoretic deposition time. When the electrophoretic deposition time reached 8 min, the value of SE remained 87–95 dB in the frequency range of 8.2–12.4 GHz. The increase in SE was mainly attributed to the improvement in the reflection and multiple reflection losses of incident electromagnetic wave due to the increased amounts of CNTs and interfaces. The methods provided an efficient strategy to produce laminated metal matrix composites with high electromagnetic shielding properties.


2021 ◽  
pp. 004051752110342
Author(s):  
Xinghua Hong ◽  
Lulu Zhong ◽  
Junmin Wan ◽  
Yongqiang Li ◽  
Fuwang Guan ◽  
...  

In this paper, to determine the impact of carbon fiber orientation and interweaving on electromagnetic interference (EMI) shielding behaviors, anisotropic and isotropic samples were developed by conductive/dielectric weaving of spatially distributed carbon fiber and glass fiber. Effortless and cost-effective, the electromagnetic shielding efficiency (SE) was up to 42 dB and the SE/thickness) was 41 dB/mm, which had apparent polarization selection characteristics. In addition, the angle (θ) sensitivity for the SE in transverse electric and transverse magnetic polarization modes was given in detail. SE was generally proportional to θ. Moreover, the fingerprint-like radar chart of anisotropic carbon hybrid woven fabrics in the X-band was performed, which makes polarization selection characteristics more intuitive. This paper presented an easy and effective route for assembling hybrid carbon fiber fabrics with high EMI shielding performance, which offers a clear perspective on the simulation and study of carbon fiber electromagnetic properties.


Sign in / Sign up

Export Citation Format

Share Document