Analysis of a Novel Traverse Mechanism Driven by Non-Circular Gears with Fourier Pitch-Line Applied on Silk Reeling Machine

2014 ◽  
Vol 536-537 ◽  
pp. 1295-1300
Author(s):  
Jian Neng Chen ◽  
Jiang Jun Yan ◽  
Liang Sun ◽  
Ming Zhou

Insufficiency of traditional EB-type silk reeling machine was pointed out after analyzing its traverse mechanism. A novel traverse mechanism driven by non-circular gears with Fourier pitch-line was proposed in order to make up the insufficiency of the traditional EB-type machine. Kinematical mathematic model of this mechanism was established and an aided analysis and simulation software was compiled. A group of preferable parameters was obtained by means of human-computer interactive optimization method. New advantages of uniform roundtrip velocity and better silk winding shape were achieved by the novel traverse mechanism compared to the traditional EB-type mechanism.

2013 ◽  
Vol 572 ◽  
pp. 476-479
Author(s):  
Sheng Long Li ◽  
Liang Gao ◽  
He Zhang

Friction plate, the key part of the planetary transmission, is often damaged by the impact of the geer mesh. And the reason of the impact damage is not known yet. The backlash of the friction plate is crucial to the impact damage, thus the relationship of the backlash and impact damage is dissgussed in this study.The mathematic model is built up to calculate the impact force and the ADAMS dynamics simulation software is used to check the result of the mathematic model and get the dynamic characteristics of the impact force and provide the basis for the optimizing of backlash. Keywords: friction plate;impact of geer mesh;geer backlash;mathematic model


Author(s):  
Patrick Nwafor ◽  
Kelani Bello

A Well placement is a well-known technique in the oil and gas industry for production optimization and are generally classified into local and global methods. The use of simulation software often deployed under the direct optimization technique called global method. The production optimization of L-X field which is at primary recovery stage having five producing wells was the focus of this work. The attempt was to optimize L-X field using a well placement technique.The local methods are generally very efficient and require only a few forward simulations but can get stuck in a local optimal solution. The global methods avoid this problem but require many forward simulations. With the availability of simulator software, such problem can be reduced thus using the direct optimization method. After optimization an increase in recovery factor of over 20% was achieved. The results provided an improvement when compared with other existing methods from the literatures.


2006 ◽  
Vol 913 ◽  
Author(s):  
Pei W. Ding ◽  
Kristel Fobelets ◽  
Jesus E Velazquez-Perez

AbstractA novel field effect transistor (FET) that uses 3-dimensional (3-D) embedded gate fingers – the Screen-Grid Field Effect Transistor (SGFET) – is proposed. The gating action of the SGFET is based on the design of multiple gating cylinders into the channel region, perpendicular to the current flow. Such configuration allows a full 3-D gate control of the current which improves the device characteristics by increasing the gate to channel coupling. Initial investigations of the SGFET using 3-D TCAD TaurusTM simulation software are presented in this paper. The results indicate that the proposed SGFET offers the possibility of downscaling without degrading the output characteristics. A comparison between the SGFET and both bulk and SOI MOSFETs shows the superior characteristics of the SGFET for low power operation.


2013 ◽  
Vol 365-366 ◽  
pp. 194-198 ◽  
Author(s):  
Mei Ni Guo

mprove the existing genetic algorithm, make the vehicle path planning problem solving can be higher quality and faster solution. The mathematic model for study of VRP with genetic algorithms was established. An improved genetic algorithm was proposed, which consist of a new method of initial population and partheno genetic algorithm revolution operation.Exploited Computer Aided Platform and Validated VRP by simulation software. Compared this improved genetic algorithm with the existing genetic algorithm and approximation algorithms through an example, convergence rate Much faster and the Optimal results from 117.0km Reduced to 107.8km,proved that this article improved genetic algorithm can be faster to reach an optimal solution. The results showed that the improved GA can keep the variety of cross and accelerate the search speed.


Author(s):  
Yong Lu ◽  
Daniel B. Olsen

Variable valve timing technologies for internal combustion engines are used to improve power, torque, and increase fuel efficiency. Details of a new solution are presented in this paper for optimizing valve motions of a full variable valve actuation (FVVA) system. The optimization is conducted at different speeds by varying full variable valve motion (variable exhaust open angle, intake close angle, velocity of opening and closing, overlap, dwell duration, and lift) parameters simultaneously; the final optimized valve motions of CY4102 diesel engine are given. The CY4102 diesel engine with standard cam drives is used in large quantities in Asia. An optimized electrohydraulic actuation motion used for the FVVA system is presented. The electrohydraulic actuation and optimized valve motions were applied to the CY4102 diesel engine and modeled using gt-power engine simulation software. Advantages in terms of volumetric efficiency, maximum power, brake efficiency, and fuel consumption are compared with baseline results. Simulation results show that brake power is improved between 12.8% and 19.5% and torque is improved by 10%. Brake thermal efficiency and volumetric efficiency also show improvement. Modeling and simulation results show significant advantages of the full variable valve motion over standard cam drives.


2014 ◽  
Vol 953-954 ◽  
pp. 673-679
Author(s):  
Yang Yang Wang ◽  
Ping Fang Hu ◽  
Fei Lei ◽  
Na Zhu ◽  
Tian Hua Wu ◽  
...  

A design method for ground-coupled heat pump (GCHP) systems with specific constraint conditions is proposed. The total borehole number, borehole depth, borehole space and average velocity of fluid in the U-tube are considered as variables in the optimization problem. The optimization problem of four variables is transformed into that of single decision variable. A case study, which includes different schemes for designing GCHP systems of an office building and the corresponding economic analysis, is performed with the aid of simulation software. The result shows that optimal design parameters could be found in an economic optimization problem with specific constraint conditions. Additionally, design parameters may have a notable influence on the energy consumption of circulating pumps. The optimization method in this paper could be utilized by engineering designers for reference.


1983 ◽  
Vol 4 (4) ◽  
pp. 381-394 ◽  
Author(s):  
Vilas Wuwongse ◽  
Shigenobu Kobayashi ◽  
Shin-ichi Iwai ◽  
Atsunobu Ichikawa

2011 ◽  
Vol 50-51 ◽  
pp. 54-58
Author(s):  
Nan Ji ◽  
Jie Zhang ◽  
Yan Gao

This article sets up mathematic model for the traffic circle to determine how best to control traffic flow. In order to make the traffic at the circle intersection smooth in maximum, this model figures out the largest traffic capacity through Wardrop’s formula. When the signal control is needed, a linkage time solving model is set up, which proves the number of seconds of every green light and work out the delay time. At last, the simulation software VISSIM is used for an example to work out the average delay time under the signal control. The result matches with this model.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
B. Yang ◽  
Q. Xu ◽  
L. He ◽  
L. H. Zhao ◽  
Ch. G. Gu ◽  
...  

In this paper, a novel global optimization algorithm has been developed, which is named as particle swarm optimization combined with particle generator (PSO–PG). In PSO–PG, a PG was introduced to iteratively generate the initial particles for PSO. Based on a series of comparable numerical experiments, it was convinced that the calculation accuracy of the new algorithm as well as its optimization efficiency was greatly improved in comparison with those of the standard PSO. It was also observed that the optimization results obtained from PSO–PG were almost independent of some critical coefficients employed in the algorithm. Additionally, the novel optimization algorithm was adopted in the airfoil optimization. A special fitness function was designed and its elements were carefully selected for the low-velocity airfoil. To testify the accuracy of the optimization method, the comparative experiments were also carried out to illustrate the difference of the aerodynamic performance between the optimized and its initial airfoil.


2011 ◽  
Vol 250-253 ◽  
pp. 2672-2677 ◽  
Author(s):  
Xian Song Xie ◽  
Dong Jin Yan ◽  
Yue Zhai Zheng

Genetic algorithm is a non-numerical optimization method which based on natural selection and population genetics.Using genetic algorithm to optimize the mix proportion design of high performance concrete, it takes into account the economic profitability on the foundation of satisfying the requirements of durability, strength, workability and dimensional stability of concrete, it establishes a mathematic model applying the performance of material as constraint condition, and the economic cost as optimization target.Using binary coding to represent the chromosome bit serial of individual, through selection, crossover, mutation and other genetic operator to conduct global probability search, taking the principle of “survival of the fittest”, finally achieve the best population and individual. Compare the results of optimization with the mix proportion in practice engineering case, we can reach the conclusion that Genetic Algorithm could reduce the cost, save energy, provides better use value on engineering practice.


Sign in / Sign up

Export Citation Format

Share Document