Research on the Microstructure and Mechanical Properties of Spray-Deposited 8009 Heat Resistant Aluminum Alloy

2014 ◽  
Vol 543-547 ◽  
pp. 3733-3736
Author(s):  
Rong Hua Zhang ◽  
Biao Wu ◽  
Xiao Ping Zheng

In this study, 8009 heat resistant aluminum alloy was synthesized by the spray atomization and deposition technique. The microstructure and mechanical properties of the alloy were studied using transmission electron microscopy, X-ray diffraction, and tensile tests. The secondary phases in the microstructure of the spray-deposited alloy were examined. The tensile test results indicate that the spray-deposited 8009 alloy both at room and elevated temperature displays superior tensile strength due to the presence of the thermally stable Al12(Fe,V)3Si particles.

2012 ◽  
Vol 706-709 ◽  
pp. 264-267
Author(s):  
Feng Wang ◽  
Bai Qing Xiong ◽  
Yon Gan Zhang ◽  
Hong Wei Liu ◽  
Zhi Hui Li ◽  
...  

In this study, Zn-30Al-1Cu alloy was synthesized by the spray atomization and deposition technique. The microstructure and mechanical properties of the alloy were studied using optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and tensile tests. It can be seen that the microstructure of spray-deposited Zn-30Al-1Cu alloy is composed of the Zn/Al eutectoids and few compounds. The Zn/Al eutectoids were shown lamellar, particle and Chinese script morphologies. The compound phases in the microstructure of the spray-deposited alloy were examined. The property test results indicate that the spray-deposited Zn-30Al-1Cu alloy displays superior tensile strength.


2014 ◽  
Vol 988 ◽  
pp. 156-160
Author(s):  
Hong Wei Liu ◽  
Feng Wang ◽  
Bai Qing Xiong ◽  
Yong An Zhang ◽  
Zhi Hui Li ◽  
...  

The microstructure and mechanical properties of the Al-2.24Cu-1.42Mg-0.9Fe-0.9Ni alloy were studied using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and tensile tests. The results indicate that the microstructures of the as cast alloy involve α-Al matrix, Al/Al2CuMg eutectic structure, Al7Cu2Fe, Al7Cu4Ni and Al9FeNi compounds. The tensile test results indicate that the alloy at elevated temperature (200°C) displays superior tensile strength due to the presence of the thermally stable Al7Cu2Fe, Al7Cu4Ni and Al9FeNi compounds.


2014 ◽  
Vol 783-786 ◽  
pp. 503-508
Author(s):  
Feng Wang ◽  
Bai Qing Xiong ◽  
Yon Gan Zhang ◽  
Zhi Hui Li ◽  
Hong Wei Liu ◽  
...  

In this study, Mg-6.8Gd-4.5Y-0.5Zr alloy was fabricated by the spray atomization and deposition technique. The microstructure and mechanical properties of the alloy were studied using optical microscopy, scanning/transmission electron microscopy, X-ray diffraction, and tensile tests. The secondary phases in the microstructure of the spray-deposited alloy were examined. The tensile test results indicate that the spray-deposited Mg-6.8Gd-4.5Y-0.5Zr alloy displays superior tensile strength due to grain refinement and the presence of precipitating strengthening phases.


2014 ◽  
Vol 59 (1) ◽  
pp. 127-131 ◽  
Author(s):  
J. Bogucka

Abstract The influence of bonding temperature on microstructure and mechanical properties of AA5251 alloy sheets have been analyzed in the paper. The alloy was deformed with the method of accumulative roll bonding (ARB) in various temperature conditions i.e. at ambient temperature up to 5th cycle (ε = 4.0) and using pre-heating of sheet packs at 200°C and 300°C up to 10 cycles (ε = 8.0). The deformed material was subjected to structural observations using TEM, measurements of crystallographic texture with the technique of X-ray diffraction and tensile tests. It was established that the temperature of roll-bonding had a significant effect on the structure evolution and the observed changes of mechanical properties. High refinement of microstructure and optimum mechanical properties were obtained for the material processed at lower temperatures, i.e. at ambient temperature and pre-heating at 200°C. Recovery structure processes occurring during deformation were observed in the alloy bonded with pre-heating at 300°C and therefore mechanical properties were lower than for the alloy bonded at lower temperatures.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1564 ◽  
Author(s):  
Wenbo Fu ◽  
Huahai Shen ◽  
Liqun Shi ◽  
Xiaosong Zhou ◽  
Xinggui Long

A series of helium (He) charged nanograin-sized erbium (Er) films were deposited by direct current (DC)-magnetron sputtering with different He/Ar mixture gases. The microstructure and mechanical properties of He-charged Er films were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and nanoindentation. The helium concentrations in Er films, determined by elastic recoil detection analysis (ERDA), ranged from 0 to 49.6%, with the increase in He:Ar flow ratio up to 18:1. The XRD results show that the grain sizes of Er films decreased with and increase in He content. The embedded He atoms induced the formation of spherical nanometer He bubbles, and the diameter of the He bubbles increased with the He content. The hardness and Young’s modulus increased and decreased with the decreasing grain sizes of polycrystalline Er–He films. The mechanisms of mechanical properties with respect to the grain size and He content were discussed based on the Hall–Petch formula and composite spheres model.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zaiqiang Feng ◽  
Mingqi Tang ◽  
...  

This present work investigates the effects of sintering temperature on densification, mechanical properties and microstructure of Al-based alloy pressed by high-velocity compaction. The green samples were heated under the flow of high pure (99.99 wt%) N2. The heating rate was 4 °C/min before 315 °C. For reducing the residual stress, the samples were isothermally held for one h. Then, the specimens were respectively heated at the rate of 10 °C/min to the temperature between 540 °C and 700 °C, held for one h, and then furnace-cooled to the room temperature. Results indicate that when the sintered temperature was 640 °C, both the sintered density and mechanical properties was optimum. Differential Scanning Calorimetry, X-ray diffraction of sintered samples, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and Transmission Electron Microscope were used to analyse the microstructure and phases.


2016 ◽  
Vol 61 (2) ◽  
pp. 761-766 ◽  
Author(s):  
A. Zieliński ◽  
M. Sroka ◽  
A. Hernas ◽  
M. Kremzer

Abstract The HR3C is a new steel for pressure components used in the construction of boilers with supercritical working parameters. In the HR3C steel, due to adding Nb and N, the compounds such as MX, CrNbN and M23C6 precipitate during service at elevated temperature, resulting in changes in mechanical properties. This paper presents the results of microstructure investigations after ageing at 650, 700 and 750 °C for 5,000 h. The microstructure investigations were carried out using scanning and transmission electron microscopy. The qualitative and quantitative identification of the existing precipitates was carried out using X-ray analysis of phase composition. The effect elevated temperature on microstructure and mechanical properties of the examined steel was described.


2017 ◽  
Vol 898 ◽  
pp. 638-642 ◽  
Author(s):  
Dong Xu Qiao ◽  
Hui Jiang ◽  
Xiao Xue Chang ◽  
Yi Ping Lu ◽  
Ting Ju Li

A series of refractory high-entropy alloys VTaTiMoAlx with x=0,0.2,0.6,1.0 were designed and produced by vacuum arc melting. The effect of added Al elements on the microstructure and mechanical properties of refractory high-entropy alloys were investigated. The X-ray diffraction results showed that all the high-entropy alloys consist of simple BCC solid solution. SEM indicated that the microstructure of VTaTiMoAlx changes from equiaxial dendritic-like structure to typical dendrite structure with the addition of Al element. The composition of different regions in the alloys are obtained by energy dispersive spectroscopy and shows that Ta, Mo elements are enriched in the dendrite areas, and Al, Ti, V are enriched in inter-dendrite areas. The yield strength and compress strain reach maximum (σ0.2=1221MPa, ε=9.91%) at x=0, and decrease with the addition of Al element at room temperature. Vickers hardness of the alloys improves as the Al addition.


2010 ◽  
Vol 654-656 ◽  
pp. 2126-2129 ◽  
Author(s):  
Yuichi Nakahira ◽  
Tomonari Inamura ◽  
Hiroyasu Kanetaka ◽  
Shuichi Miyazaki ◽  
Hideki Hosoda

Effect of nitrogen (N) addition on mechanical properties of Ti-Cr-Sn alloy was investigated in this study. Ti-7mol%Cr-3mol%Sn was selected and less than 0.5wt% of N were systematically added. The alloys were characterized by optical microscopy, X-ray diffraction analysis and tensile tests at room temperature. The apparent phase was β (bcc) phase, whereas the presence of precipitates was confirmed in 0.5wt%N-added alloy only which did not exhibit sufficient cold workability. The grain size was not largely affected by N addition being less than 0.5wt%. Tensile tests revealed that less than 0.5wt%N addition improves the strength which is due to the solution hardening by interstitial N atoms.


2020 ◽  
Vol 405 ◽  
pp. 379-384
Author(s):  
Joanna Borowiecka-Jamrozek ◽  
Jan Lachowski

The main purpose of this work was to determine the effect of the powder composition on the microstructure and properties of iron-based sinters used as a matrix in diamond tools. The Fe-Cu-Ni sinters obtained from a mixture of ground powders were used for experiments. The influence of manufacturing process parameters on the microstructure and mechanical properties of sinters was investigated. Sintering was performed using hot-pressing technique in a graphite mould. The investigations of obtained sinters included: density, hardness, static tensile test, X-ray diffraction analysis, microstructure and fracture surface observations. The obtained results indicate that the produced sinters have good plasticity and relatively high hardness.


Sign in / Sign up

Export Citation Format

Share Document