Performance Simulation Analysis of Contactless Excitation Energy Transmission Realized by Loosely Coupled Magnetic Tank Transformer

2014 ◽  
Vol 556-562 ◽  
pp. 2031-2034
Author(s):  
Jin Feng Liu ◽  
Xu Dong Wang ◽  
Yong Yu

Energy coupling realized by contactless magnetic tank transformer as new approach of rotator excitation in synchronous machine could replace brushes and slip rings of traditional excitation. For new contactless energy transmission (CET) system, its research about energy-efficiency quality still remains a low level because application and research of CET isn’t comprehensive, especially how to improve transfer power and efficiency isn’t enough. According to characteristics of contactless energy transmission system, mutual inductance model was used to describe the loosely coupled connection between primary and secondary winding. Then, optimum energy-efficiency product was proposed. We can use this indicator to consider efficiency, system cost, reliability and so on based on maximum output power. Mutual inductance coupling parameter would be optimized through this indicator and optimum design of system energy-efficiency characteristic would be realized at minimum cost. Although the input voltage had little increase, simulation research proved that system efficiency had a quit handsome increase based on optimum energy-efficiency product which established mutual inductance coupling parameter. This work is supported by National Natural Science Foundation (51177031).

2021 ◽  
Vol 9 ◽  
Author(s):  
Liming Sun ◽  
Jingbo Wang ◽  
Lan Tang

Accurate and reliable photovoltaic (PV) cell parameter identification is critical to simulation analysis, maximum output power harvest, and optimal control of PV systems. However, inherent high-nonlinear and multi-modal characteristics usually result in thorny obstacles to hinder conventional optimization methods to obtain a fast and satisfactory performance. In this study, a novel bio-inspired grouped beetle antennae search (GBAS) algorithm is devised to effectively identify unknown parameters of three different PV models, i.e., single diode model (SDM), double diode model (DDM), and triple diode model (TDM). Compared against beetle antennae search (BAS) algorithm, optimization efficiency of GBAS algorithm is markedly enhanced based on a cooperative searching group that consists of multiple individuals rather than a single beetle. Besides, a dynamic balance mechanism between local exploitation and global exploration is designed to increase the probability for a higher quality optimum. Comprehensive case studies demonstrate that GBAS algorithm can outperform other advanced meta-heuristic algorithms in both optimization precision and stability for estimating PV cell parameters, e.g., standard deviation (SD) of root mean square error (RMSE) obtained by GBAS algorithm is 64.34% smaller than the best value obtained by other algorithms in SDM, 61.86% smaller than that in DDM.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2232
Author(s):  
Ivan Ruiz Cózar ◽  
Toni Pujol ◽  
Eduard Massaguer ◽  
Albert Massaguer ◽  
Lino Montoro ◽  
...  

Automotive thermoelectric generators (ATEGs) are devices used to harvest waste energy from the exhaust gases of internal combustion engines. An ATEG is essentially formed by three main elements: (1) heat absorber in contact with exhaust gases; (2) thermoelectric modules that directly convert heat into electricity; (3) heat sink to increase the heat transfer through the system. Thermoelectric modules (TEM) are commonly based on small-scale commercial units, with tenths of them needed to assemble a full ATEG device. Thus, several thermal and electrical connections between TEMs can be implemented. Previous studies focused on the implications on the output power. Here, we investigated the effects of using different module connections on the energy efficiency and on the electrical outputs (voltage and current). The study was carried out numerically with ATEGs that used from 4 to 100 individual TEMs. Series, parallel and square connections were investigated under two different engine operating points. The maximum output power was obtained with overall energy conversion efficiencies on the order of 3%. Though the series connection provided the highest output power, the square configuration was the best compromise between output power and electrical characteristics (voltage and current) to successfully integrate the ATEG into the vehicle management system.


Author(s):  
X. Zhang ◽  
Y. Pan ◽  
T.T. Meek

Industrial microwave heating technology has emerged as a new ceramic processing technique. The unique advantages of fast sintering, high density, and improved materials properties makes it superior in certain respects to other processing methods. This work presents the structure characterization of a microwave sintered ceramic matrix composite.Commercial α-alumina powder A-16 (Alcoa) is chosen as the matrix material, β-silicon carbide whiskers (Third Millennium Technologies, Inc.) are used as the reinforcing element. The green samples consisted of 90 vol% Al2O3 powder and 10 vol% ultrasonically-dispersed SiC whiskers. The powder mixture is blended together, and then uniaxially pressed into a cylindrical pellet under a pressure of 230 MPa, which yields a 52% green density. The sintering experiments are carried out using an industry microwave system (Gober, Model S6F) which generates microwave radiation at 2.45 GHz with a maximum output power of 6 kW. The composites are sintered at two different temperatures (1550°C and 1650°C) with various isothermal processing time intervals ranging from 10 to 20 min.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 508
Author(s):  
Kui You ◽  
Zihan Zhou ◽  
Chao Gao ◽  
Qiao Yang

Biochar is a kind of carbon-rich material formed by pyrolysis of biomass at high temperature in the absence or limitation of oxygen. It has abundant pore structure and a large surface area, which could be considered the beneficial characteristics for electrodes of microbial electrochemical systems. In this study, reed was used as the raw material of biochar and six biochar-based electrode materials were obtained by three methods, including one-step biochar cathodes (BC 800 and BC 700), biochar/polyethylene composite cathodes (BP 5:5 and BP 6:4), and biochar/polyaniline/hot-melt adhesive composite cathode (BPP 5:1:4 and BPP 4:1:5). The basic physical properties and electrochemical properties of the self-made biochar electrode materials were characterized. Selected biochar-based electrode materials were used as the cathode of sediment microbial electrochemical reactors. The reactor with pure biochar electrode (BC 800) achieves a maximum output power density of 9.15 ± 0.02 mW/m2, which increases the output power by nearly 80% compared with carbon felt. When using a biochar/polyaniline/hot-melt adhesive (BPP 5:1:4) composite cathode, the output power was increased by 2.33 times. Under the premise of ensuring the molding of the material, the higher the content of biochar, the better the electrochemical performance of the electrodes. The treatment of reed powder before pyrolysis is an important factor for the molding of biochar. The one-step molding biochar cathode had satisfactory performance in sediment microbial electrochemical systems. By exploring the biochar-based electrode, waste biomass could be reused, which is beneficial for the environment.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7334
Author(s):  
Seongwoog Oh ◽  
Jungsuek Oh

This paper proposes a novel design for a chip-on-probe with the aim of overcoming the heat dissipation effect during brain stimulations using modulated microwave signals. The temperature of the stimulus chip during normal operation is generally 40 °C–60 °C, which is sufficient to cause unintended temperature effects during stimulation. This effect is particularly fatal in brain stimulation applications that require repeated stimulation. This paper proposes, for the first time, a topology that vertically separates the stimulus chip generating the stimulus signal and the probe delivering the signal into the brain to suppress the heat transfer while simultaneously minimizing the radio frequency (RF) transmission loss. As the proposed chip-on-probe should be attached to the head of a small animal, an auxiliary board with a heat sink was carefully designed considering the weight that does not affect the behavior experiment. When the transition structures are properly designed, a heat sink can be mounted to maximize the cooling effect, reducing the temperature by more than 13 °C in a simulation when the heat generated by the chip is transferred to the brain, while the transition from the chip to the probe experiences a loss of 1.2 dB. Finally, the effectiveness of the proposed design is demonstrated by fabricating a chip with the 0.28 μm silicon-on-insulator (SOI) complementary metal–oxide–semiconductor (CMOS) process and a probe with a RT6010 printed-circuit board (PCB), showing a temperature reduction of 49.8 °C with a maximum output power of 11 dBm. In the proposed chip-on-probe device, the temperature formed in the area in contact with the brain is measured at 31.1 °C.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 391
Author(s):  
Nan Wu ◽  
Yuncheng He ◽  
Jiyang Fu ◽  
Peng Liao

In this paper a novel hybrid piezoelectric and electromagnetic energy harvester for civil engineering low-frequency sloshing environment is reported. The architecture, fabrication and characterization of the harvester are discussed. The hybrid energy harvester is composed of a permanent magnet, copper coil, and PVDF(polyvinylidene difluoride) piezoelectric film, and the upper U-tube device containing a cylindrical fluid barrier is connected to the foundation support plate by a hinge and spring. The two primary means of energy collection were through the vortex street, which alternately impacted the PVDF piezoelectric film through fluid shedding, and the electromotive force (EMF) induced by changes in the magnetic field position in the conducting coil. Experimentally, the maximum output power of the piezoelectric transformer of the hybrid energy harvester was 2.47 μW (circuit load 270 kΩ; liquid level height 80 mm); and the maximum output power of the electromagnetic generator was 2.72 μW (circuit load 470 kΩ; liquid level height 60 mm). The low-frequency sloshing energy collected by this energy harvester can drive microsensors for civil engineering monitoring.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3460
Author(s):  
Jingcheng Shang ◽  
Yizhou Liu ◽  
Shengzhi Zhao ◽  
Yuefeng Zhao ◽  
Yuzhi Song ◽  
...  

We experimentally investigate the formation of various pulses from a thulium–holmium (Tm–Ho)-codoped nonlinear polarization rotation (NPR) mode-locking fiber oscillator. The ultrafast fiber oscillator can simultaneously operate in the noise-like and soliton mode-locking regimes with two different emission wavelengths located around 1947 and 2010 nm, which are believed to be induced from the laser transition of Tm3+ and Ho3+ ions respectively. When the noise-like pulse (NLP) and soliton pulse (SP) co-exist inside the laser oscillator, a maximum output power of 295 mW is achieved with a pulse repetition rate of 19.85-MHz, corresponding to a total single pulse energy of 14.86 nJ. By adjusting the wave plates, the fiber oscillator could also deliver the dual-NLPs or dual-SPs at dual wavelengths, or single NLP and single SP at one wavelength. The highest 61-order harmonic soliton pulse and 33.4-nJ-NLP are also realized respectively with proper design of the fiber cavity.


Sign in / Sign up

Export Citation Format

Share Document