Experimental Study on Behavior of the Channel-Masonry-Concrete Composite Structures

2014 ◽  
Vol 578-579 ◽  
pp. 1251-1256
Author(s):  
Kao Zhong Zhao ◽  
Zhi Feng Zhu

channel - masonry - concrete composite structures underpinning is a new type of underpinning technology, the two channel steel and the concrete of compression flange and the masonry between the channel combined into an overall flexural members, it can used in masonry structure underpinning the transformation of the wall, it has simple construction, safety and reliability, the combination of large carrying capacity and other characteristics. Through this combination of three members in bending tests, we can get, reinforced by setting off key, channel, masonry and concrete can form a combination of flexural members to work together, channels tensile stress, concrete bear stress, masonry between the channel improved stability of the web and shear capacity of the beam, we gives the flexural capacity calculation method of the composite structure through analysis.

2006 ◽  
Vol 326-328 ◽  
pp. 1811-1816 ◽  
Author(s):  
Young Ho Kim ◽  
Jae Ho Jung ◽  
Soon Jong Yoon ◽  
Won Sup Jang

In the construction of composite bridge structures, various types of shear connectors are usually used to provide an efficient load transfer and the composite action of two or more different materials. In the previous work conducted by authors, a new type of the shear connector was introduced, which is the perforated shear connector with flange heads (T-shaped perforated shear connector), and the structural behavior of the shear connector was discussed based on the results of push-out tests. For the practical design of new shear connector, it is necessary to develop the equation for the prediction of the load carrying capacity of the shear connector. In this study, the existing design equations for the Perfobond shear connector were briefly analyzed and the equation for the prediction of the shear capacity of T-shaped perforated shear connector was suggested empirically. By comparing the results obtained by the suggested equation, the existing equations for the Perfobond shear connector, and the experiment, the applicability and effectiveness of the suggested equation was estimated.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Shuangjie Zheng ◽  
Chen Zhao ◽  
Yangqing Liu

In steel and concrete composite structures, it is unfavourable to install many headed studs or perfobond ribs with narrow spacings at the joints. To solve this problem, a new type of a mixed shear connector was developed by combining a headed stud and perfobond rib at the same steel beam flange. In this paper, totally nine push-out tests were conducted. The main purpose was to compare the failure mode and the load-slip behavior of the headed stud, perfobond rib, and mixed shear connector. Furthermore, 19 nonlinear finite element simulations were performed. The effects of connector dimension and material properties on the structural behaviors of mixed shear connectors were studied. Based on the experimental and parametric study, an analytical equation was finally proposed to evaluate the shear capacity of perfobond rib with a headed stud mixed shear connector.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 421
Author(s):  
Chang-Hwan Lee ◽  
Iman Mansouri ◽  
Jaehoon Bae ◽  
Jaeho Ryu

A new type of composite voided slab, the TUBEDECK (TD), which utilizes the structural function of profiled steel decks, has recently been proposed. Previous studies have confirmed that the flexural strength of TD slabs can be calculated based on the full composite contribution of the steel deck, but for long-span flexural members, the deflection serviceability requirement is often dominant. Herein, we derived a novel deflection prediction approach using the results of flexural tests on slab specimens, focusing on TD slabs. First, deflection prediction based on modifications of the current code was proposed. Results revealed that TD slabs exhibited smaller long-term deflections and at least 10% longer maximum span lengths than solid slabs, indicating their greater efficiency. Second, a novel rational method was derived for predicting deflections without computing the effective moment of inertia. The ultimate deflections predicted by the proposed method correlated closely with the deflection under maximum bending moments. To calculate immediate deflections, variation functions for the concrete strain at the extreme compression fiber and neutral axis depth were assumed with predictions in good agreement with experiments. The proposed procedure has important implications in highlighting a new perspective on the deflection prediction of reinforced concrete and composite flexural members.


2021 ◽  
Vol 16 ◽  
pp. 155892502110203
Author(s):  
Mohammad Iqbal Khan ◽  
Galal Fares ◽  
Yassir Mohammed Abbas ◽  
Wasim Abbass ◽  
Sardar Umer Sial

Strain-hardening cement-based composites (SHCC) have recently been developed as repair materials for the improvement of crack control and strength of flexural members. This work focuses on strengthening and flexural enhancement using SHCC layer in tensile regions of flexural members under three different curing conditions. The curing conditions simulate the effect of different environmental conditions prevailing in the central and coastal regions of the Arabian Peninsula on the properties of SHCC as a retrofitting material. In this investigation, beams with SHCC layer were compared to control beams. The beams with SHCC layer of 50-mm thickness were cast. The results revealed that the flexural behavior and the load-carrying capacity of the normal concrete beam specimens under hot and dry environmental conditions were significantly reduced, lowering the ductility of the section. However, compressive strength is comparatively unaffected. Similarly, the hot curing conditions have also led to a notable reduction in the loading capacity of the beam with SHCC layer with a slight effect on its stiffness. On the other hand, steam-curing conditions have shown improvement in load-carrying capacity and a reduction in section ductility of the beam with SHCC layer. It was found that the structural unit retrofitted with SHCC layer was a curing-regime dependent as the tensile and strain-hardening properties of SHCC are highly sensitive to the alteration in the cement hydration process. A normal curing regime was found effective and satisfying the practical, cost, and performance requirements. Accordingly, a normal curing regime could be implemented to retrofit reinforced concrete (RC) beams with SHCC layers as recommended in the study.


Author(s):  
Zhanchong Shi ◽  
Qingtian Su ◽  
Xinyi He ◽  
Quanlu Wang ◽  
Kege Zhou ◽  
...  

<p>In order to solve the construction problem of perforating rebars’ precise location and it’s getting through the circular holes for the the conventional perfobond connector, a new type of perfobond connector with boot shaped slots was proposed. This new type perfobond connector has the advantage of convenient construction and pricise location. Three groups of push-out tests with nine specimens were carried out to study the shear capacity of the new type perfobond connector. The effect of the number and the spacing of boot shaped slots on failure modes, shear capacity, peak slip and shear stiffness were mainly studied. The test results show that the new type of perfobond connector with boot shaped slots has a high shear capacity and a good ductility, it could be widely applied on the connection between the steel and the concrete structures.</p>


2018 ◽  
Vol 24 (8) ◽  
pp. 1281-1287 ◽  
Author(s):  
Filip Górski ◽  
Wiesław Kuczko ◽  
Radosław Wichniarek ◽  
Adam Hamrol

Purpose This paper aims to study strength properties and accuracy of a new type of composites, in which matrix is manufactured additively, whereas infill is a polyurethane resin. The process of manufacturing these composites is invented and patented by authors. Design/methodology/approach The authors developed a method of manufacturing composites, which was then used to build samples for tensile and bending tests (according to ISO 572 and ISO 178 standards), as well as measurements of accuracy. Findings It was found that the method of composite manufacturing designed by the authors allows obtaining both stronger and cheaper parts in comparison with the traditional acrylonitrile butadiene styrene FDM parts. Research limitations/implications The research was limited to static tests only, and no dynamic tests were performed on the manufactured samples. The accuracy analysis is only a basic one. Practical implications Developed method allows to shorten the FDM process with simultaneous decrease of costs (in professional processes) and increase of strength of obtained products. Originality/value Application of composite materials presented in the paper will significantly expand possibilities of using FDM method to manufacture functional, strong parts able to carry higher loads. Application of different combinations of thermoplastic matrix materials with different resin infills will allow to control properties of obtained composites. The solution is currently subject of a patent.


2000 ◽  
Vol 6 (5) ◽  
pp. 307-314
Author(s):  
Arnoldas Šneideris ◽  
Gediminas Marčiukaitis

The mostly used method for strengthening flexural concrete members is mounting exterior reinforcing bars. When applying the strengthening by exterior reinforcing, the problem of assessing the remaining carrying capacity of the member being strengthened and estimating the actual stress in the reinforcement placed in the tensile zone of the member is to be solved. In the paper a method for the analysis of the flexural concrete members strengthened by exterior reinforcing bars is proposed. The method allows to design the exterior reinforcement by taking account of the remaining carrying capacity of the member being strengthened. Moreover, the method proposed enables one to assess a redistribution of stress between the originally placed reinforcement and the exterior reinforcement used to strengthen the member. The redistribution of stress has a considerable influence on the carrying capacity of the member as well as on its bending stiffness. The stress-strain relationships of the both reinforcements are necessary for assessing the redistribution of stress between them, and these relationships are input for the analysis method proposed in this paper. In opposite to other methods suggested in the literature and used for the analysis of the flexural members strengthened in the way described above, the method proposed in the present paper allows one to take account of the pastiche deformations of concrete and steel in the member being strengthened. In addition, the proposed method is less complicated to apply when compared to methods suggested to date. The method proposed is represented by the formula (9), which expresses the bending capacity of the flexural member after its strengthening. The main idea of the proposed method is to replace the design strengths of the reinforcement cast in concrete and mounted outside the member, R s , by the reduced strength σ s, redwhich is assigned to the both reinforcements. The reduced strength σs, red was introduced in order to take account of the plastic deformations of reinforcing steel. The proposed method was verified by a series of experiments with simple reinforced concrete beams. The aim of the experiments was an investigation of the redistribution of stress inside the normal section of the member analysed and the assessment of the influence of the stress-strain state in the member before strengthening on the characteristics of its tensile zone after the member is strengthened. The results of the experiments are shown in Fig 7. In this figure, the experimental relationship between the deflection of the beams being investigated, f, and the reduced bending stress M/M u is depicted, where M is the stress applied and M u is the carrying capacity of the beam. One can see from the polygons shown in Fig 7 that the exceedance of the yield stress in the reinforcement cast in concrete has a considerable influence on the carrying capacity and the bending stiffness of the beams under investigation. Another results obtained from the experiments with the beams strengthened by the exterior reinforcement is shown in Fig 10. This figure demonstrates the dependence of the strain in the reinforcement cast in concrete and the exterior reinforcement, ϵ, on the reduced bending stress M/M u . From Fig 10, one can conclude that the strain in both reinforcements is influenced by the stress-strain state available in the member before strengthening. In Table 1, the bending capacities measured in the experiments just mentioned are compared with the ones calculated by applying the formula (9), which utilises the reduced strength σ s, red , and also the formula (1), which expresses the bending capacity through the design strengths R s . The formula (1) represents one of the methods suggested to date for the prediction of the bending carrying after strengthening of flexural members by exterior reinforcement. The comparison of the experimental results with the ones obtained from formulas (1) and (9) demonstrates that the method represented by the formula (1) has the unconservative difference in bending capacity of 11 %, whereas the proposed method represented by the formula (9) yields a conservative difference of only 2%. The results of experiments may be applied to predict the redistribution of stress in the statically indetermined structures.


Author(s):  
Paolo Foraboschi

Renovation, restoration, remodeling, refurbishment, and retrofitting of build-ings often imply modifying the behavior of the structural system. Modification sometimes includes applying forces (i.e., concentrated loads) to beams that before were subjected to distributed loads only. For a reinforced concrete structure, the new condition causes a beam to bear a concentrated load with the crack pattern that was produced by the distributed loads that acted in the past. If the concentrated load is applied at or near the beam&rsquo;s midspan, the new shear demand reaches the maximum around the midspan. But around the midspan, the cracks are vertical or quasi-vertical, and no inclined bar is present. So, the actual shear capacity around the midspan not only is low, but also can be substantially lower than the new demand. In order to bring the beam capacity up to the demand, fiber-reinforced-polymer composites can be used. This paper presents a design method to increase the concentrated load-carrying capacity of reinforced concrete beams whose load distribution has to be changed from distributed to concentrated, and an analytical model to pre-dict the concentrated load-carrying capacity of a beam in the strengthened state.


Sign in / Sign up

Export Citation Format

Share Document