Investigation of the Sintering Mechanism of Steel Slag-Based Ceramics

2014 ◽  
Vol 584-586 ◽  
pp. 1202-1207
Author(s):  
Yuan Yuan Zhou ◽  
Yu Li ◽  
Da Qiang Cang ◽  
Hong Li

In order to manufacture high-value added materials from steel slag, a steel slag-based ceramic was prepared in the paper. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were carried out to characterize the phase formation and the microstructure of the steel slag-based ceramics. Besides, the line shrinkage, flexural strength and water absorption were also determined.Results show that the variation of the line shrinkage and the flexural strength had a positive correlation with the increase of the temperature at the interval 1160°C~1210°C, which was opposite to the change of the water absorption. 1210°C was proved to be the optimum sintering temperature in this work, at which the maximum flexural strength was obtained with a value of 99.39MPa. With the temperature increasing, the quartz phase gradually decreased, participating in the sintering reaction, and the diopside become dominant phase with columnar crystals in 2-5μm at length, which would contribute to the fine performance of the ceramics.

2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2019 ◽  
Vol 9 (22) ◽  
pp. 4741
Author(s):  
Xuedong Zhang ◽  
Chaozhen Zheng ◽  
Sanping Liu ◽  
Yanbing Zong ◽  
Qifan Zhou ◽  
...  

Steel slag, clay, quartz, feldspar, and talc were mixed to prepare steel slag ceramics. Crystalline phase transitions, microstructures, and the main physical-mechanical properties (water absorption, linear shrinkage, and flexural strength) of steel slag ceramics for various MgO/Al2O3 ratios were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and mechanical testing. The results indicated the significant effect of the MgO/Al2O3 ratio on these properties. A decrease in the MgO/Al2O3 ratio resulted in a major crystalline phase transformation from quartz and pyroxene phases to quartz and anorthite phases. High MgO content facilitated production of pyroxene phases. High Al2O3 content favored production of anorthite phases. The water absorption of all the samples (below 0.5%) met the Chinese national standard requirements. Samples with an MgO/Al2O3 ratio of 0.6 exhibited excellent flexural strength, reaching 62.20 MPa. FactSage software was used to predict batch viscosity, which increased with decreasing MgO/Al2O3 ratios.


2020 ◽  
Vol 1 (2) ◽  
pp. 53-57
Author(s):  
M Muntamijayati ◽  
◽  
Suprihatin Suprihatin ◽  
Yanti Yanti ◽  
Simon Sembiring ◽  
...  

The superconducting material BPSCCO-2212 with doping Pb = 0,2 has been synthesized by the wet mixing method. Calculation is caried out at 800 °C for 10 hours. While sintering is done at 825 °C, 830 °C, 835 °C and 840 °C for 20 hours. The synthesis result were characterized by XRD X-Ray Diffraction) and SEM (Scanning Electron Microscopy). The XRD spectrum analysis results that have been processed using celref, show that in general the samples produced have formed the BPSCCO-2212 phase (indicated the presence of Bi-2212 peaks) and have been oriented (indicated the existence of peaks with h = k = 0, l even number). For the calculation result obtanced the highest volume fraction value at 830 °C sintering temperature with a value FV = 66,97 % and the highest degree of orientation at 825 °C with a value of P = 76,54 %. The results of the SEM photo recorder generally show that the crystals formed are oriented.


2018 ◽  
Vol 8 (7) ◽  
pp. 1187 ◽  
Author(s):  
Yanbing Zong ◽  
Xuedong Zhang ◽  
Emile Mukiza ◽  
Xiaoxiong Xu ◽  
Fei Li

In this study, SiO2–Al2O3–CaO–MgO steel slag ceramics containing 5 wt % MgO were used for the preparation of ceramic bodies, with the replacement of 5–20 wt % quartz and feldspar by fly ash. The effect of the addition of fly ash on the sintering shrinkage, water absorption, sintering range, and flexural strength of the steel slag ceramic was studied. Furthermore, the crystalline phase transitions and microstructures of the sintered samples were investigated by XRD, Fourier transform infrared (FTIR), and SEM. The results showed that the addition of fly ash affected the crystalline phases of the sintered ceramic samples. The main crystal phases of the base steel slag ceramic sample without fly ash were quartz, diopside, and augite. With increasing fly ash content, the quartz diffraction peak decreased gradually, while the diffraction peak intensity of anorthite became stronger. The mechanical properties of the samples decreased with the increasing amount of fly ash. The addition of fly ash (0–20 wt %) affected the optimum sintering temperature (1130–1160 °C) and widened the sintering range. The maximum addition amount of fly ash should be 15 wt %, for which the optimum sintering temperature was 1145 °C, water absorption was 0.03%, and flexural strength was 43.37 MPa higher than the Chinese national standard GBT 4100-2015 requirements.


2015 ◽  
Vol 5 (01) ◽  
pp. 31
Author(s):  
Resky Irfanita ◽  
Asnaeni Ansar ◽  
Ayu Hardianti Pratiwi ◽  
Jasruddin J ◽  
Subaer S

The objective of this study is to investigate the effect of sintering temperature on the synthesis of SiC produced from rice husk ash (RHA) and 2B graphite pencils. The SiC was synthesized by using solid state reaction method sintered at temperatures of 750°C, 1000°C and 1200°C for 26 hours, 11.5 hours and 11.5 hours, respectively. The quantity and crystallinity level of SiC phase were measured by means of Rigaku MiniFlexII X-Ray Diffraction (XRD). The microstructure of SiC was examined by using Tescan Vega3SB Scanning Electron Microscopy (SEM). The XRD results showed that the concentration (wt%) of SiC phase increases with the increasing of sintering temperature. SEM results showed that the crystallinity level of SiC crystal is improving as the sintering temperature increases


2011 ◽  
Vol 335-336 ◽  
pp. 699-703
Author(s):  
Hui Hui Tan ◽  
Zhu Xing Tang ◽  
Xia Zhao ◽  
He Zhang

This paper introduces Si2ON2-SiC ceramic fabricated by pressureless sintering method and studies the effect of additives, nitriding temperatures on bulk density, porosity, phase composition and microstructure. It is discovered that additives MgO, CeO2 can increase the densities of Si2ON2-SiC ceramic apparently, and MgO additive has a better effect than CeO2. Nitriding temperature also is an important factor. The bulk density of the specimen with MgO additive reaches maximum at 1.91 g/cm3 when sintered at 1450 °C, and the bulk density of specimen with CeO2 additive is 1.86 g/cm3 at the same condition while the bulk density of the specimen without additive is only 1.75 g/cSuperscript textm3. The X-ray diffraction and scanning electron microscopy of the specimens show that the amount of Si2ON2 increase with the sintering temperature increase. But when the temperature is higher than 1500 °C the Si2ON2 grains will decompose into Si3N4, and Si2ON2 will vanish at 1550 °C


2007 ◽  
Vol 26-28 ◽  
pp. 243-246
Author(s):  
Xing Hua Yang ◽  
Jin Liang Huang ◽  
Xiao Wang ◽  
Chun Wei Cui

BaBi4-xLaxTi4O15 (BBLT) ceramics were prepared by conventional solid phase sintering ceramics processing technology. The crystal structure and the microstructure were detected by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD analyses show that La3+ ions doping did not change the crystal structure of BBT ceramics. The sintering temperature increased from 1120°C to 1150°C with increasing Lanthanum content from 0 to 0.5, but it widened the sintering temperature range from 20°C to 50°C and refined the grain size of the BBT ceramic. Additionally, polarization treatment was performed and finally piezoelectric property was measured. As a result, the piezoelectric constant d33 of the 0.1at.% doped BBLT ceramics reached its highest value about 22pc/N at polarizing electric field of 8kV/mm and polarizing temperature of 120°C for 30min.


2011 ◽  
Vol 399-401 ◽  
pp. 855-859
Author(s):  
Ting Ting Wu ◽  
Bo Lin Wu

In order to improve the acid resistance and reduce the apparent density of fracturing proppants, TiO2 powder added in the system of BaO-MgO-Al2O3 fracturing proppants were prepared by the technique of pressureless sintering. The properties of the samples were investigated by the measurements of acid solubility, X-ray diffraction and scanning electron microscopy. The results show that the acid solubility of alumina matrix fracturing proppants contenting TiO2 of the 4wt% and BaO/MgO with the ratio of 3:7 is 0.15%. It is an important development in acid resistance performance of fracturing proppants research on laboratory. TiO2 is added to the raw materials and then calcine them to ceramics, which can reduces the sintering temperature, promote the densification and improve acid-resistant property of fracturing proppants.


2021 ◽  
Vol 1016 ◽  
pp. 1790-1796
Author(s):  
Maxim Syrtanov ◽  
Egor Kashkarov ◽  
Tatyana Murashkina ◽  
Nahum Travitzky

This paper describes the influence of sintering temperature on phase composition and microstructure of paper-derived Ti3AlC2 composites fabricated by spark plasma sintering. The composites were sintered at 100 MPa pressure in the temperature range of 1150-1350 °C. Phase composition and microstructure were analyzed by X-ray diffraction and scanning electron microscopy, respectively. The multiphase structure was observed in the sintered composites consisting of Ti3AlC2, Ti2AlC, TiC and Al2O3 phases. The decomposition of the Ti3AlC2 phase into Ti2AlC and TiC carbide phases was observed with temperature rise. The total content of Ti3AlC2 and Ti2AlC phases was reduced from 84.5 vol.% (1150 °C) to 69.5 vol.% (1350 °C). The density of composites affected by both the content of TiC phase and changes in porosity.


2011 ◽  
Vol 495 ◽  
pp. 190-193 ◽  
Author(s):  
Mehdi Mirzayi ◽  
Mohammad Hoseen Hekmatshoar ◽  
Abdolazim Azimi

Nanometer-sized ZnO powder was synthesized at low decomposing temperature by polyacrylamide-gel method where Acrylamide was used as monomer, and N,N-methylene-bisacrylamide as lattice reagent. The characteristic of powders were studied by X-ray diffraction and scanning electron microscope (SEM). The results indicated uniform distribution of nanoZnO particles. Also electrical properties were investigated at different sintering temperatures of 800, 900 and 1000 ° C. It was observed that increase in sintering temperature, resulted in increase in the grain size of the varistor ceramics. The observed nonlinearity in current – voltage characteristic was explained by the existence of potential barrier at the grain boundaries and lowering of the barriers.


Sign in / Sign up

Export Citation Format

Share Document