Development of Guided Wave Ultrasonic Inspection Method for Thick Composite Structures

2014 ◽  
Vol 592-594 ◽  
pp. 153-157
Author(s):  
U. Saikrishna ◽  
K. Srinivas ◽  
Y.L.V.D. Prasad

Ultrasonic Non-destructive testing is a well known technique for inspecting fiber reinforced composite structures however; its capability is severely limited by the high attenuation in thick and multi layer structures. Guided wave ultrasonic inspection has been reported to be useful tool for quantitative identification of composite structures. It takes advantage of tailoring / generating desired ultrasonic wave modes (Symmetric and anti-symmetric) for improved transmission through the composite structure. For this, guided waves have to be generated selectively by precisely placing transducer at an angle to the test surface. Automation of two axis fixture for transmission and reception of transducers have to be used for avoiding manual errors. The captured signals have to be processed in order to extract useful information from the received ultrasonic signals. The proposed project aims at developing automated guided wave inspection methods along with digital signal processing for generating dispersion curves for thick composited. Using test laminates with implanted defects, methodology for thick composite inspection with guided wave ultrasonic’s will be established. For this data will be captured and analyzed using Labview software.

2021 ◽  
pp. 87-131
Author(s):  
Vykintas Samaitis ◽  
Elena Jasiūnienė ◽  
Pawel Packo ◽  
Damira Smagulova

AbstractUltrasonic inspection is a well recognized technique for non-destructive testing of aircraft components. It provides both local highly sensitive inspection in the vicinity of the sensor and long-range structural assessment by means of guided waves. In general, the properties of ultrasonic waves like velocity, attenuation and propagation characteristics such as reflection, transmission and scattering depend on composition and structural integrity of the material. Hence, ultrasonic inspection is commonly used as a primary tool for active inspection of aircraft components such as engine covers, wing skins and fuselages with the aim to detect, localise and describe delaminations, voids, fibre breakage and ply waviness. This chapter mainly focuses on long range guided wave structural health monitoring, as aircraft components require rapid evaluation of large components preferably in real time without the necessity for grouding of an aircraft. In few upcoming chapters advantages and shortcommings of bulk wave and guided wave ultrasonic inspection is presented, fundamentals of guided wave propagation and damage detection are reviewed, the reliability of guided wave SHM is discussed and some recent examples of guided wave applications to SHM of aerospace components are given.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2128 ◽  
Author(s):  
Xiang Wan ◽  
Xuhui Zhang ◽  
Hongwei Fan ◽  
Peter W. Tse ◽  
Ming Dong ◽  
...  

The polygonal drill pipe is one of the most critical yet weakest part in a high-torque drill machine. The inspection of a polygonal drill pipe to avoid its failure and thus to ensure safe operation of the drilling machine is of great importance. However, the current most frequently used ultrasonic inspection method is time-consuming and inefficient when dealing with a polygonal drill pipe, which is normally up to several meters. There is an urgent need to develop an efficient method to inspect polygonal drill pipes. In this paper, an ultrasonic guided wave technique is proposed to inspect polygonal drill pipes. Dispersion curves of polygonal drill pipes are firstly derived by using the semi-analytical finite element method. The ALID (absorbing layer using increasing damping) technique is applied to eliminate unwanted boundary reflections. The propagation characteristics of ultrasonic guided waves in normal, symmetrically damaged, and asymmetrically damaged polygonal drill pipes are studied. The results have shown that the ultrasonic guided wave technique is a promising and effective method for the inspection of polygonal drill pipes.


2020 ◽  
pp. 147592172091969 ◽  
Author(s):  
Xiang Wan ◽  
Meiru Liu ◽  
Xuhui Zhang ◽  
Hongwei Fan ◽  
Peter W Tse ◽  
...  

Square steel tubes have been widely used in buildings and machines in civil engineering. The inspection of square tubes is becoming increasingly urgent and important to ensure the safety of these buildings and machines. However, the current most frequently used traditional ultrasonic inspection method is time-consuming and inefficient when dealing with long square tubes. There is an urgent need to develop an efficient approach to inspect square tubes. In this article, the use of ultrasonic guided waves is proposed. Phase and group velocity dispersion curves of square tube structures are first derived using the semi-analytical finite element method. An appropriate guided wave mode used for inspecting square tubes is selected. Ultrasonic guided waves propagating in normal, in-plane surface-damaged, and edge-damaged square tubes are numerically studied. It is illustrated that the monitoring points are able to receive reflected wave signals from both the in-plane surface and the edge damages. Experimental studies are also conducted to study ultrasonic guided waves interacting with circular through-hole damages located in surfaces and slot damages at edges. It is shown that both the circular through-hole damages located in different surfaces and slot damages at different edges can be clearly detected by reflected guided wave packets. It is found that the signal-to-noise ratios have been significantly improved after applying impedance matching to piezoelectric wafer transducers. The results have shown that ultrasonic guided waves are a promising and effective method for the inspection of square tubes.


2019 ◽  
Vol 9 (8) ◽  
pp. 1628 ◽  
Author(s):  
Hossein Taheri ◽  
Ahmed Arabi Hassen

Carbon- and glass fiber-reinforced polymer (CFRP and GFRP) composite materials have been used in many industries such as aerospace and automobile because of their outstanding strength-to-weight ratio and corrosion resistance. The quality of these materials is important for safe operation. Nondestructive testing (NDT) techniques are an effective way to inspect these composites. While ultrasonic NDT has previously been used for inspection of composites, conventional ultrasonic NDT, using single element transducers, has limitations such as high attenuation and low signal-to-noise ratio (SNR). Using phased array ultrasonic testing (PAUT) techniques, signals can be generated at desired distances and angles. These capabilities provide promising results for composites where the anisotropic structure makes signal evaluation challenging. Defect detection in composites based on bulk and guided waves are studied. The capability of the PAUT and its sensitivity to flaws were evaluated by comparing the signal characteristics to the conventional method. The results show that flaw sizes as small as 0.8 mm with penetration depth up to 25 mm can be detected using PAUT, and the result signals have better characteristics than the conventional ultrasonic technique. In addition, it has been shown that guided wave generated by PAUT also has outstanding capability of flaw detection in composite materials.


Abstract. Micro-damages such as pores, closed delamination/debonding and fiber/matrix cracks in carbon fiber reinforced plastics (CFRP) are vital factors towards the performance of composite structures, which could collapse if defects are not detected in advance. Nonlinear ultrasonic technologies, especially ones involving guided waves, have drawn increasing attention for their better sensitivity to early damages than linear acoustic ones. The combination of nonlinear acoustics and guided waves technique can promisingly provide considerable accuracy and efficiency for damage assessment and materials characterization. Herein, numerical simulations in terms of finite element method are conducted to investigate the feasibility of micro-damage detection in multi-layered CFRP plates using the second harmonic generation (SHG) of asymmetric Lamb guided wave mode. Contact acoustic nonlinearity (CAN) is introduced into the constitutive model of micro-damages in composites, which leads to the distinct SHG compared with material nonlinearity. The results suggest that the generated second order harmonics due to CAN could be received and adopted for early damage evaluation without matching the phase of the primary waves.


Author(s):  
Scott M. Bland ◽  
Shiv P. Joshi

This paper discusses the development and testing of an automated robotic ultrasonic guided wave based inspection system developed to provide an efficient, accurate and reliable method for performing nondestructive evaluation and longer term structural health monitoring in advanced composite structures. The development process and challenges in the design of the automated robotic system are described. A number of tests were performed using the developed robotic ultrasonic inspection system on composite honeycomb core sandwich materials. Experiments showed that the developed automated ultrasonic guided wave inspection system was successful at locating disbonds between the core and the facesheets. Environmental sensitivity testing was also performed to characterize the effect of changing temperature and humidity on system performance. These tests indicate that approach was relatively insensitive to environmental changes, so that this approach could be used in service environment without a significant reduction in performance. Current system testing indicates that the described robotic ultrasonic inspection approach offers an accurate and robust method for inspection and long term tracking of advanced structural system health.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 315 ◽  
Author(s):  
Kumar Anubhav Tiwari ◽  
Renaldas Raisutis ◽  
Olgirdas Tumsys ◽  
Armantas Ostreika ◽  
Kestutis Jankauskas ◽  
...  

The estimation of the size and location of defects in multi-layered composite structures by ultrasonic non-destructive testing using guided waves has attracted the attention of researchers for the last few decades. Although extensive signal processing techniques are available, there are only a few studies available based on image processing of the ultrasonic B-scan image to extract the size and location of defects via the process of ultrasonic non-destructive testing. This work presents an image processing technique for ultrasonic B-scan images to improve the estimation of the location and size of disbond-type defects in glass fiber-reinforced plastic materials with 25-mm and 51-mm diameters. The sample is a segment of a wind turbine blade with a variable thickness ranging from 3 to 24 mm. The experiment is performed by using a low-frequency ultrasonic system and a pair of contact-type piezoceramic transducers kept apart by a 50-mm distance and embedded on a moving mechanical panel. The B-scan image acquired by the ultrasonic pitch-catch technique is denoised by utilizing features of two-dimensional discrete wavelet transform. Thereafter, the normalized pixel densities are compared along the scanned distance on the region of interest of the image, and a −3 dB threshold is applied to the locations and sizes the defects in the spatial domain.


Author(s):  
Owen M. Malinowski ◽  
Matthew S. Lindsey ◽  
Jason K. Van Velsor

In the past few decades, ultrasonic guided waves have been utilized more frequently Non-Destructive Testing (NDT); most notably, in the qualitative screening of buried piping. However, only a fraction of their potential applications in NDT have been fully realized. This is due, in part, to their complex nature, as well as the high level of expertise required to understand and utilize their propagation characteristics. The mode/frequency combinations that can be generated in a particular structure depend on geometry and material properties and are represented by the so-called dispersion curves. Although extensive research has been done in ultrasonic guided wave propagation in various geometries and materials, the treatment of ultrasonic guided wave propagation in periodic structures has received little attention. In this paper, academic aspects of ultrasonic guided wave propagation in structures with periodicity in the wave vector direction are investigated, with the practical purpose of developing an ultrasonic guided wave based inspection technique for finned tubing. Theoretical, numerical, and experimental methods are employed. The results of this investigation show excellent agreement between theory, numerical modeling, and experimentation; all of which indicate that ultrasonic guided waves will propagate coherently in finned tube only if the proper wave modes and frequencies are selected. It is shown that the frequencies at which propagating wave modes exist can be predicted theoretically and numerically, and depend strongly on the fin geometry. Furthermore, the results show that these propagating wave modes are capable of screening for and identifying the axial location of damage in the tube wall, as well as separation of the fins from the tube wall. The conclusion drawn from these results is that Guided Wave Testing (GWT) is a viable inspection method for screening finned tubing.


2016 ◽  
Vol 28 (9) ◽  
pp. 1211-1220 ◽  
Author(s):  
Pabitro Ray ◽  
Prabhu Rajagopal ◽  
Balaji Srinivasan ◽  
Krishnan Balasubramaniam

Harnessing of ultrasonic guided waves confined in local features such as bends and welds, known as feature-guided waves, has emerged as a promising technique for non-destructive testing and structural health monitoring of industrial and aerospace structures. This article introduces a fiber Bragg grating based technique which uses feature-guided waves to detect anomalies or defects in plate structures with transverse bends. We are able to obtain good consistency between simulation and experimental results, both in the case of defect-free bent plates and those with transverse defects. Such results establish fiber Bragg gratings as a viable alternative to conventional techniques for structural health monitoring of bent plates.


Sign in / Sign up

Export Citation Format

Share Document