Heat Transfer Analysis of Motorcycle Engine Cylinder Using CFD under Various Fin Geometries and Speed Condition

2014 ◽  
Vol 592-594 ◽  
pp. 1612-1616
Author(s):  
Amit Ranjan ◽  
D.H. Das

In thisstudy, the heat transfer analysis of internal combustion engine of motorbike is performed with the various fin geometries. Generally rectangular fins are used for motorbike but still this fin geometry could be modified to increase the heat transfer rate.A numerical investigation is carried out for two geometries such as annular and wavy, of finned engine cylinder using CFD and the results are compared. Various experimental methods are presented in literature to see the effect of wind velocity, fin geometry and the ambient temperature on heat transfer rate. In the present paper an effort is made to study the effect of wind velocities and fins geometries on the heat transfer rate and simulation of the heat transfer using CFD. The models are generated in CATIA V5 and simulated in FLUENT software. The results show that the heat transfer rate and effectiveness of the wavy fins is better than for the annular fins.

An automobile engine produces a lot of heat and is subjected to thermal stresses. These high temperatures and thermal stresses generated might causedistortions in the engine components and also reduces the volumetric efficiency of the engine. It is important to remove this heat generated to ensure the ideal functionality of the engine. In order to dissipate this heat out of the engine through convection, extended surfaces(fins) are used as a medium, projected to the engine walls. In the present analysis, arbitrary shaped fins of same surface area are designed and heat transfer analysis is performed. Using the ANSYS Fluent software the analysis is done. The main intent of our study is to increase the heat transfer rate using the arbitrary shaped fins. The results obtained are compared with the regular shaped solid fins. Results show there's a significant increase in heat transfer through the arbitrary shaped fins. The fin with elliptical hole has greater heat transfer rate than other models of fins used in the analysis.


Author(s):  
Anthony Edward Morris ◽  
C. S. Wei ◽  
Runar Unnthorsson ◽  
Robert Dell

Since 2006, The Center for Innovation and Applied Technology (CIAT) at Cooper Union for the Advancement of Science and Art has been developing a system to use thermal pollution to heat the growth medium of green roofs. CIAT is researching various apparatus and techniques, including shell-and-tube and shell-and-coil heat exchangers, to improve its heated ground agricultural projects. There are limited recorded observations on shell-and-coil heat exchangers; therefore a laboratory work station was created of interchangeable components to test the efficiency of a variety of coil designs. This paper discusses the data collected on temperature, pressure, and flow rates for a straight tube and two different helical coils. The analysis of this data indicates the superiority of a helical coil design when compared to a straight tube design with respect to both rating and heat transfer rate. The same data analysis has lead to preliminary observations on how the contour properties of a helical coil influence the heat transfer rate through a coil. The authors intend to further this helical coil research to develop a useful mathematical model for determining efficient designs for shell-and-coil heat exchangers.


One method of increasing the heat transfer rate of the fins is by adding slits to the fins. The purpose of this study was to analyze the heat transfer rate by adding slits in the annular fins with a vertical cylinder under natural convection conditions. The vertical cylinder length, cylinder diameter, fin diameter, and distance between the fins are 313 mm, 25 mm, 125 mm, and 7 mm, respectively. The number of slits varied from 2 slits and 4 slits and the spacing of the slits was kept constant by 5 mm. This research was conducted with a simulation method using Autodesk CFD 2019 software. As a result, fins with slits and fins without slits were compared. The value of the heat transfer rate that occurs and the heat transfer coefficient in the annular fin with slits is better than the fin without slits. The highest heat transfer rates were 142.928 W and 2.6022 W/m 2K for an annular fin with 2 slits


2001 ◽  
Vol 64 (4) ◽  
pp. 451-455 ◽  
Author(s):  
G. J. FLEISCHMAN ◽  
C. BATOR ◽  
R. MERKER ◽  
S. E. KELLER

The effect of hot water immersion on both the reduction of Escherichia coli O157:H7 on the apple surface and internal temperatures of the apple was assessed in this study. Microbial reductions were measured experimentally, whereas internal temperatures were calculated through a mathematical analysis of experimental heat transfer data obtained from the apples. A method was developed to provide a purely surface-based inoculation of E. coli O157:H7. Rinsing produced no reduction, and treatments at 80 and 95°C produced reductions of more than 5 logs in 15 s or less. The heat transfer analysis based on experimental data was used to calculate surface heat transfer coefficients and predict temperatures throughout the apple. The analysis indicated a low heat transfer rate. Although it reduces thermal degradation, a low heat transfer rate precludes thermal-based reduction of any internalized microorganisms.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Nosheen Gul ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu

Abstract The inadequate cooling capacity of the customary fluids forced the scientists to look for some alternatives that could fulfill the industry requirements. The inception of nanofluids has revolutionized the modern industry-oriented finished products. Nanofluids are the amalgamation of metallic nanoparticles and the usual fluids that possess a high heat transfer rate. Thus, meeting the cooling requirements of the engineering and industrial processes. Having such amazing traits of nanofluids in mind our aim here is to discuss the flow of nanofluid comprising Nickel–Zinc Ferrite and Ethylene glycol over a curved surface with heat transfer analysis. The heat equation contains nonlinear thermal radiation and heat generation/absorption effects. The envisioned mathematical model is supported by the slip and the thermal stratification boundary conditions. Apposite transformations are betrothed to obtain the system of ordinary differential equations from the governing system in curvilinear coordinates. A numerical solution is found by applying MATLAB build-in function bvp4c. The authentication of the proposed model is substantiated by comparing the results with published articles in limiting case. An excellent concurrence is seen in this case. The impacts of numerous physical parameters on Skin friction and Nusselt number and, on velocity and temperature are shown graphically. It is observed that heat generation/absorption has a significant impact on the heat transfer rate. It is also comprehended that velocity and temperature distributions have varied behaviors near and far away from the curve when the curvature is enhanced.


Radiators used in the automotive application are a class of heat exchangers whose main purpose is to cool the coolant coming from the internal combustion engines. These coolants flow through tubes covered with fins that facilitate a faster way of heat transfer to the surrounding more efficiently. With the increase in efficiency of the engine cooling system it directly helps in the longevity of the engine in other words, the life of the internal combustion engine increases multifold times. Upon investigating we found different shapes that can be used to optimize the radiators efficiency. There are several other ways to improve the efficiency of a radiator. And these can be achieved by improving the surface area of the radiator, improving airflow through it, improving coolant property which flows through these tubes covered with fin all around and at last using alternate materials that prove to be more efficient than the present ones that are being used. The demand of the current times of climate change and energy crisis have paved way for improved heat transfer rates and designing radiators in smaller dimensions and sizes at the same time being more efficient than the previous generation of radiators. With the above conditions in mind, it has been found out that with a simple modification of changing the existing rectangular-shaped radiators into spiral-shaped ones thereby improving efficiency to improved levels, which finds its use in the current generation of vehicles which are benefitting from the improved rate of heat transfer taking place. The spiral radiator of copper tube used here is wound in two coils connected centrally. Spiral tubes of the radiator have circumferential fins. In this type of configuration, heat transfer rate will increase because of having a circumferential fin across the length of the spiral tube through which water flows. These design considerations have been done keeping in mind the major aims to achieve for this type of design and they are improving heat transfer rate and achieving compactness of shape of radiator. We also did Computational Fluid Dynamics or CFD Analysis to test the material properties for the application of heat transfer and how it fares against old materials.


2010 ◽  
Vol 129-131 ◽  
pp. 1322-1325 ◽  
Author(s):  
Jiin Yuh Jang ◽  
Jia Yan Wu ◽  
Shang Hua Tsai

This study presents heat transfer rate and temperature distributions for the prediction of each component in an air-cooled motorcycle engines. The 3-D finite element method was used to solve the temperature field and heat transfer rate for each component (intake valves, exhaust valves, piston, piston rings, cylinder head and cylinder) of motorcycle engine when the piston is in TDC and BDC. The results shows that the fractions of heat transfer rate for each component are as follows: intake valves 11%, exhaust valves 8%, cylinder head 21%, the piston 35% and the cylinder 25%. And the temperature measurement value is in good agreement with experimental data within 20%.


2018 ◽  
Vol 4 (5) ◽  
pp. 4 ◽  
Author(s):  
Roshan Kumar Nirala ,Pushpendra Kumar Jain2

The engine cylinder is one of the major I C engine components, which is subjected to high temperature variations and thermal stresses. To cool the cylinder, fins are provided on the surface of the cylinder to increase the rate of heat transfer. By doing thermal analysis on the engine cylinder fins, it is helpful to know the heat dissipation inside the cylinder. The main aim of the paper is to increase the heat dissipation rate by using the invisible working fluid of air. It is observed that, by increasing the surface area the heat dissipation rate increases, further the main purpose of using these cooling fins is to cool the engine cylinder by air. This paper  presents a review to increase heat transfer rate in a four stroke S I engine by using geometrically modified fins


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2410
Author(s):  
Amjad Ali ◽  
Zainab Bukhari ◽  
Gullnaz Shahzadi ◽  
Zaheer Abbas ◽  
Muhammad Umar

Heat transfer analysis of the pulsatile flow of a hybrid nanofluid through a constricted channel under the impact of a magnetic field and thermal radiation is presented. Hybrid nanofluids form a new class of nanofluids, distinguished by the thermal properties and functional utilities for improving the heat transfer rate. The behaviors of a water-based copper nanofluid and water-based copper plus a single-wall carbon nanotube, i.e., (Cu–SWCNT/water), hybrid nanofluid over each of velocity, wall shear stress, and temperature profiles, are visualized graphically. The time-dependent governing equations of the incompressible fluid flow are transformed to the vorticity-stream function formulation and solved numerically using the finite difference method. The laminar flow simulations are carried out in 2D for simplicity as the flow profiles are assumed to vary only in the 2D plane represented by the 2D Cartesian geometry. The streamlines and vorticity contours are also shown to demonstrate the flow behviour along the channel. For comparison of the flow characteristics and heat transfer rate, the impacts of variations in Hartmann number, Strouhal number, Prandtl number, and the thermal radiation parameter are analyzed. The effects of the emerging parameters on the skin friction coefficient and Nusselt number are also examined. The hybrid nanofluid is demonstrated to have better thermal characteristics than the traditional one.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
M. Saleem ◽  
M. A. Hossain ◽  
Suvash C. Saha ◽  
Y. T. Gu

The effect of radiation on natural convection of Newtonian fluid contained in an open cavity is investigated in this study. The governing partial differential equations are solved numerically using the Alternate Direct Implicit method together with the Successive Overrelaxation method. The study is focused on studying the flow pattern and the convective and radiative heat transfer rates are studied for different values of radiation parameters, namely, the optical thickness of the fluid, scattering albedo, and the Planck number. It was found that, in the optically thin limit, an increase in the optical thickness of the fluid raises the temperature and radiation heat transfer of the fluid. However, a further increase in the optical thickness decreases the radiative heat transfer rate due to increase in the energy level of the fluid, which ultimately reduces the total heat transfer rate within the fluid.


Sign in / Sign up

Export Citation Format

Share Document