The Resulting Toolpath of Turning a Special Surface on CNC Lathe

2014 ◽  
Vol 599-601 ◽  
pp. 739-742
Author(s):  
Chun Xia Tian

The surface of workpiece in NC turning process, often encounter the workpiece surface cross quadrant arc, if the use of the same processing methods and ordinary arc, often leads to the emergence of cross quadrant arc machining shape error, through the research of the NC machining of workpiece surface cross quadrant arc, CNC turning reasonable go knife and tool path in NC turning, solve cross quadrant arc, some defects in the surface of the workpiece processing, ensure the machining with circular arc profile theory demands, so as to improve the machining quality and the machining accuracy requirements.

2016 ◽  
Vol 851 ◽  
pp. 433-438
Author(s):  
Shu Jie Sun ◽  
Hu Lin ◽  
Liao Mo Zheng ◽  
Jin Gang Yu ◽  
Bei Bei Li ◽  
...  

To ensure the machining precision of work piece and improve the machining quality and machining efficiency, a dynamic transition method based on axial machining accuracy is given. Firstly, the maximum machining contour error is computed based on the axial machining accuracy, and the tool path is processed based on the machining contour error to reduce the amount of command points. Secondly, the circle transition method is used to make the tool path smoother and the machining efficiency higher. Finally, the radius of the transition circle is adjusted based on the maximum velocity of each transition circle. The experimental results shows that the method proposed could effectively satisfy the needs of the machining accuracy and improve the processing efficiency, while reduce the amount of path data.


2014 ◽  
Vol 615 ◽  
pp. 3-6
Author(s):  
Cun Xia Tian

Through the process of NC machining analysis, summed up the points of NC machining process analysis, through the process of a comprehensive and reasonable analysis procedure for CNC turning and CNC programming formulation provides an important basis and guarantee, so as to improve the machining quality and the machining accuracy requirements.


2021 ◽  
Vol 13 (24) ◽  
pp. 13803
Author(s):  
Shun Jia ◽  
Shang Wang ◽  
Jingxiang Lv ◽  
Wei Cai ◽  
Na Zhang ◽  
...  

Energy-saving and emission reduction are recognized as the primary measure to tackle the problems associated with climate change, which is one of the major challenges for humanity for the forthcoming decades. Energy modeling and process parameters optimization of machining are effective and powerful ways to realize energy saving in the manufacturing industry. In order to realize high quality and low energy consumption machining of computer numerical control (CNC) lathe, a multi-objective optimization of CNC turning process parameters considering transient-steady state energy consumption is proposed. By analyzing the energy consumption characteristics in the process of machining and introducing practical constraints, such as machine tool equipment performance and tool life, a multi-objective optimization model with turning process parameters as optimization variables and high quality and low energy consumption as optimization objectives is established. The model is solved by non-dominated sorting genetic algorithm-II (NSGA-II), and the pareto optimal solution set of the model is obtained. Finally, the machining process of shaft parts is studied by CK6153i CNC lathe. The results show that 38.3% energy consumption is saved, and the surface roughness of workpiece is reduced by 47.0%, which verifies the effectiveness of the optimization method.


2013 ◽  
Vol 13 (3) ◽  
pp. 1543-1551 ◽  
Author(s):  
C. Ahilan ◽  
Somasundaram Kumanan ◽  
N. Sivakumaran ◽  
J. Edwin Raja Dhas

2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988377
Author(s):  
Yu He ◽  
Zhongming Zhou ◽  
Ping Zou ◽  
Xiaogang Gao ◽  
Kornel F Ehmann

With excellent properties, high-temperature superalloys have become the main application materials for aircraft engines, gas turbines, and many other devices. However, superalloys are typically difficult to machine, especially for the thread cutting. In this article, an ultrasonic vibration–assisted turning system is proposed for thread cutting operations in superalloys. A theoretical analysis of ultrasonic vibration–assisted thread cutting is carried out. An ultrasonic vibration–assisted system was integrated into a standard lathe to demonstrate thread turning in Inconel 718 superalloy. The influence of ultrasonic vibration–assisted machining on workpiece surface quality, chip shape, and tool wear was analyzed. The relationship between machining parameters and ultrasonic vibration–assisted processing performance was also explored. By analyzing the motion relationship between tool path and workpiece surface, the reasons for improved workpiece surface quality by ultrasonic vibration–assisted machining were explained.


Author(s):  
Hongwei Liu ◽  
Rui Yang ◽  
Pingjiang Wang ◽  
Jihong Chen ◽  
Hua Xiang

The objective of this research is to develop a novel correction mechanism to reduce the fluctuation range of tools in numerical control (NC) machining. Error compensation is an effective method to improve the machining accuracy of a machine tool. If the difference between two adjacent compensation data is too large, the fluctuation range of the tool will increase, which will seriously affect the surface quality of the machined parts in mechanical machining. The methodology used in compensation data processing is a simplex method of linear programming. This method reduces the fluctuation range of the tool and optimizes the tool path. The important aspect of software error compensation is to modify the initial compensation data by using an iterative method, and then the corrected tool path data are converted into actual compensated NC codes by using a postprocessor, which is implemented on the compensation module to ensure a smooth running path of the tool. The generated, calibrated, and amended NC codes were immediately fed to the machine tool controller. This technique was verified by using repeated measurements. The results of the experiments demonstrate efficient compensation and significant improvement in the machining accuracy of the NC machine tool.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
Yupeng Xin ◽  
Yuanheng Li ◽  
Wenhui Li ◽  
Gangfeng Wang

Cavities are typical features in aeronautical structural parts and molds. For high-speed milling of multi-cavity parts, a reasonable processing sequence planning can significantly affect the machining accuracy and efficiency. This paper proposes an improved continuous peripheral milling method for multi-cavity based on ant colony optimization algorithm (ACO). Firstly, by analyzing the mathematical model of cavity corner milling process, the geometric center of the corner is selected as the initial tool feed position. Subsequently, the tool path is globally optimized through ant colony dissemination and pheromone perception for path solution of multi-cavity milling. With the advantages of ant colony parallel search and pheromone positive feedback, the searching efficiency of the global shortest processing path is effectively improved. Finally, the milling programming of an aeronautical structural part is taken as a sample to verify the effectiveness of the proposed methodology. Compared with zigzag milling and genetic algorithm (GA)-based peripheral milling modes in the computer aided manufacturing (CAM) software, the results show that the ACO-based methodology can shorten the milling time of a sample part by more than 13%.


Author(s):  
Keigo Takasugi ◽  
Katsuhiro Nakagaki ◽  
Yoshitaka Morimoto ◽  
Yoshiyuki Kaneko

This study developed a method called non-axisymmetric curved surface turning (NACS-Turning) for a CNC lathe composed of a turning axis and two translation axes. The NACS-Turning method controls the three axes synchronously. This new machining method can reduce the lead time for non-circular shapes such as cam profiles or pistons for internal combustion engines. In our previous report, we presented an outline of a machining principle and a CAM system for NACS-Turning. However, at the same time, we found the problem that the X-axis slide exceeds the allowable acceleration. Therefore, it is preferable that the acceleration is verified during the cam application, and the tool path is generated within the allowable acceleration range. Therefore, this paper first describes the determination method of machinable conditions for NACS-Turning in the cam application. Next, based on the result, relationships between the acceleration of the X-axis slide and machining conditions are clarified. Finally, the experimental procedure showed that our proposed method does not exceed the allowable acceleration of the X-axis slide.


Sign in / Sign up

Export Citation Format

Share Document