Flow Field Simulation Analysis of Three-Way Water Hydraulic Valve Based on Surface Micro Modelling

2014 ◽  
Vol 602-605 ◽  
pp. 197-200
Author(s):  
Chuan Li Wang ◽  
Guang Xiang Pan ◽  
Hai Shun Deng

Due to special physical and chemical properties of water medium, three-way water hydraulic valve has many key technical problems that could seriouly affect the operating performance. Safety valve in three-way hydraulic valve is seen as a research object, which is aiming at studying the effect of flow field distribution with surface micro modeling in three-way hydraulic valve cavity based on FLUENT. The simulation results show that, proper surface micro modelling help to improve the three-way water hydraulic valve cavity flow field distribution, different structural parameters affecting different flow field distribution, as for micro modelling design, careful consideration of the selection of structure parameters is necessary.

2012 ◽  
Vol 472-475 ◽  
pp. 1432-1436
Author(s):  
Xiao Bin Ji ◽  
Xue Yi Qi ◽  
Xiao Yan Li ◽  
Wan Bin Jin

By using the Reynolds stress turbulence model at big Reynolds number condition and computational fluid dynamics, the data simulating calculation was carried out to the safety valve inner flow field with different opening size and different valve structural parameters. The result were showed in visual graphics , and the study showed that the valve structural parameters impact on the flow field distribution , the cavitation creation and the flow noise greatly.


2013 ◽  
Vol 791-793 ◽  
pp. 734-737 ◽  
Author(s):  
Qiu Xia ◽  
Xiang Pan Guang

This paper builds two water hydraulic poppet valve models which are of different structure, and simulation analysis used by FLUENT software on it’s internal flow field. The analysis results show that, after improving the structure of water hydraulic poppet valve, import and export pressure value differences decreased, effectively restrains the generation of cavitation, reduces the vibration amplitude and turn down noise, reduces loss of turbulent energy, the overall performance is superior to the traditional structure.


Minerals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 23 ◽  
Author(s):  
Yuekan Zhang ◽  
Peikun Liu ◽  
Lanyue Jiang ◽  
Xinghua Yang

A hydrocyclone is an instrument that can effectively separate multi-phase mixtures of particles with different densities or sizes based on centrifugal sedimentation principles. However, conventional hydrocyclones lead to two products only, resulting in an over-wide particle size range that does not meet the requirements of subsequent operations. In this article, a two-stage series, a four product hydrocyclone is proposed. The first stage hydrocyclone is designed to be a coaxial double overflow pipe: under the effect of separation, fine particles are discharged from the internal overflow pipe, while medium-size particles are discharged from external overflow pipe before entering the second stage hydrocyclone for fine sedimentation. In other words, one-stage grading leads to four products, including the first stage underflow, the first stage overflow, the second stage underflow, and the second stage overflow. The effects of structural parameters and operational parameters on flow field distribution in hydrocyclone were investigated via a study of flow field distribution in multi-product hydrocyclones using numerical simulations. The application of four product hydrocyclone in iron recovery shows that the grade and recovery of iron concentrate exceed 65.08% and 86.14%, respectively. This study provides references for understanding the flow field distribution in hydrocyclones and development of multi-product grading instrument in terms of both theory and industrial applications.


Author(s):  
Lixin Zhao ◽  
Miao Zhang ◽  
Feng Li ◽  
Zhengrong Hua

Focus on the spiral tube separator, model selection and basic parameters of numerical simulation are described. Flow field simulation analysis of spiral tube separators of both without holes and with holes are carried out respectively. Effects of gyration radius, inlet flowrate, number of spiral circles, and oil droplet diameter on flow field distribution and the separation performance of spiral tube separators are analyzed in detail. Simulation results also show that the gyration radius and inlet velocity are the two main factors affecting separation characteristics of spiral tube separators. In addition, the size of opening holes of spiral tube separator also affects separation result.


2010 ◽  
Vol 44-47 ◽  
pp. 1427-1431
Author(s):  
Guo Liang Hu ◽  
Zhi Gang Gao

In order to satisfy the flexibility requirements of the fire fighting in some particular circumstances, a self-swinging control system with valve-controlled cylinder of the liquamatic fire water monitor was designed. The self-swinging control system was composed of water hydraulic cylinder, water hydraulic valve, water channel connection plate and mechanical feedback device. This controlled system was driven by the pressure water from the monitor body. The water hydraulic cylinder drives the monitor head to swing side by side, consequently, the cover areas of the jet water from the monitor head was increased. At the same time, the modeling and simulation analysis was carried out for the self-swinging control system using the AMESim software, the simulation results show that the self-swinging control system can self-swing in a particular frequency, and the frequency is increasing with the water pressure increasing.


2014 ◽  
Vol 620 ◽  
pp. 246-253
Author(s):  
Su Zhen Wu ◽  
Han Song Yang

In this thesis, by changing the filter overflow tube insertion depth of spin streaming filter, combined with the existing drip irrigation equipment change the structure parameters of spin streaming filter. Using Fluent software to choose reasonable turbulence model for numerical simulation analysis, contrastive research on the field test was carried on, reveals the relationship between the internal flow field pressure and the flow rate. The sediment production increased before they are reduced with the increase of the overflow tube insertion depth. It should choose the optimal insertion depth according to the specific use and usage model of hydrocyclone in actually use. The variation trend of internal flow field pressure and the flow rate when selected structural parameters changed are also analyzed. With the increase of insertion depth, the axial velocity and radial velocity of sand and water inside the hydrocyclone shows the tendency of decrease. Furthermore, the field experiment verifies the simulation result, thus proving the feasibility of using Fluent computational fluid dynamics software to simulate the internal flow field of the spin streaming filter. The research results will provide referential basis for the design and application of the drip filter system.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 139-148
Author(s):  
Shiyang Liu ◽  
Xuefu Zhang ◽  
Feng Gao ◽  
Liangwen Wei ◽  
Qiang Liu ◽  
...  

AbstractWith the rapid development of traffic infrastructure in China, the problem of crystal plugging of tunnel drainage pipes becomes increasingly salient. In order to build a mechanism that is resilient to the crystal plugging of flocking drainage pipes, the present study used the numerical simulation to analyze the two-dimensional flow field distribution characteristics of flocking drainage pipes under different flocking spacings. Then, the results were compared with the laboratory test results. According to the results, the maximum velocity distribution in the flow field of flocking drainage pipes is closely related to the transverse distance h of the fluff, while the longitudinal distance h of the fluff causes little effect; when the transverse distance h of the fluff is less than 6.25D (D refers to the diameter of the fluff), the velocity between the adjacent transverse fluffs will be increased by more than 10%. Moreover, the velocity of the upstream and downstream fluffs will be decreased by 90% compared with that of the inlet; the crystal distribution can be more obvious in the place with larger velocity while it is less at the lower flow rate. The results can provide theoretical support for building a mechanism to deal with and remove the crystallization of flocking drainage pipes.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 97
Author(s):  
Junfeng Sun ◽  
Meihong Liu ◽  
Zhen Xu ◽  
Taohong Liao ◽  
Xiangping Hu ◽  
...  

A new type of cylindrical gas film seal (CGFS) with a flexible support is proposed according to the working characteristics of the fluid dynamic seal in high-rotational-speed fluid machinery, such as aero-engines and centrifuges. Compared with the CGFS without a flexible support, the CGFS with flexible support presents stronger radial floating characteristics since it absorbs vibration and reduces thermal deformation of the rotor system. Combined with the structural characteristics of a film seal, an analytical model of CGFS with a flexible wave foil is established. Based on the fluid-structure coupling analysis method, the three-dimensional flow field of a straight-groove CGFS model is simulated to study the effects of operating and structural parameters on the steady-state characteristics and the effects of gas film thickness, eccentricity, and the number of wave foils on the equivalent stress of the flexible support. Simulation results show that the film stiffness increases significantly when the depth of groove increases. When the gas film thickness increases, the average equivalent stress of the flexible support first decreases and then stabilizes. Furthermore, the number of wave foils affects the average foils thickness. Therefore, when selecting the number of wave foils, the support stiffness and buffer capacity should be considered simultaneously.


2021 ◽  
pp. 146808742199698
Author(s):  
Lyu Xiuyi ◽  
Abdullah Azam ◽  
Wang Yuechang ◽  
Lu Xiqun ◽  
Li Tongyang ◽  
...  

The piston ring-cylinder liner (PRCL) is one of the most important parts of marine diesel engines and contributes 25% to 50% of total friction loss. The lubrication simulation analysis of the PRCL system is a challenging task. Complete understanding and precise prediction of lubrication loads is a key to understanding the friction behavior of PRCL systems as the accuracy of the friction prediction depends upon precise prediction of lubrication loads. Therefore, this paper focuses on the gas pressure calculation which is the primary source of lubrication loads. The procedure presented combines the advantages of two mainstream methods to predict loads in the PRCL system. The result is a significant reduction in the computation time without compromising on accuracy. Firstly, a comparison of both approaches is presented which suggests that each technique has its limitations (one is time-bound, and one is accuracy-bound). Then, the results from both calculation methods are verified against literature and a parametric study is performed to identify the key structural parameters of PRCL system that affect the calculation efficiency. Finally, a correlation coefficient is introduced into the analysis to combine the two approaches which then identifies the conditions under which the use of the faster method becomes invalid and replaces it with the more accurate approach. This ensures optimum performance of the calculation procedure by switching between the fast and the accurate method depending upon the accuracy requirement under given conditions, thereby, simplifying the dynamic and lubrication model of PRCL systems. The study has direct implications for the tribological design of the PRCL interface.


Sign in / Sign up

Export Citation Format

Share Document