Characteristics of Deep Abnormal High Pressure and its Controlling on Hydrocarbon Accumulation in Zhanhua Sag

2014 ◽  
Vol 628 ◽  
pp. 376-382
Author(s):  
Qiu Hua Shi ◽  
Bin Xia ◽  
Zhi Feng Wan ◽  
Ya Juan Yuan

Study on abnormal pressure of sedimentary basin is of great significance. According to the ultrasonic time difference method and measured practical data, some sectional and planar pressure distribution of Zhanhua Sag are obtained while most belong to overpressure, and the pressure distribution and the formation mechanism of high pressure are also analyzed. It is showed that the pore fluid pressure of Es3 and the upper part of Es4 members are higher in Bonan subsag and Gubei subsag and the distribution of abnormal high pressure reached a maximum at the early Es3. The disequilibrium compaction, hydrocarbon generation and some clay mineral dehydration are suggested to contribute to the formation of normal high pressure, including the rapid deposition as one of the most key factor. The lower part of Es3 and Es4 themselves within the deep high pressure system, as good lithologic reservoirs, can transport oil to the upper formation by episodic release to form allochthonous atmospheric hydrocarbon reservoirs.

2017 ◽  
Vol 155 (2) ◽  
pp. 335-355 ◽  
Author(s):  
C. MALATESTA ◽  
L. FEDERICO ◽  
L. CRISPINI ◽  
G. CAPPONI

AbstractA blueschist-facies mylonite crops out between two high-pressure tectono-metamorphic oceanic units of the Ligurian Western Alps (NW Italy). This mylonitic metabasite is made up of alternating layers with different grain size and proportions of blueschist-facies minerals.The mylonitic foliation formed at metamorphic conditions of T = 220–310 °C and P = 6.5–10 kbar. The mylonite shows various superposed structures: (i) intrafoliar and similar folds; (ii) chocolate-tablet foliation boudinage; (iii) veins; (iv) breccia.The occurrence of comparable mineral assemblages along the foliation, in boudin necks, in veins and in breccia cement suggests that the transition from ductile deformation (folds) to brittle deformation (veining and breccia), passing through a brittle–ductile regime (foliation boudinage), occurred gradually, without a substantial change in mineral assemblage and therefore in the overall P–T metamorphic conditions (blueschist-facies).A strong fluid–rock interaction was associated with all the deformative events affecting the rock: the mylonite shows an enrichment in incompatible elements (i.e. As and Sb), suggesting an input of fluids, released by adjacent high-pressure metasedimentary rocks, during ductile deformation. The following fracturing was probably enhanced by brittle instabilities arising from strain and pore-fluid pressure partitioning between adjacent domains, without further external fluid input.Fluids were therefore fixed inside the rock during mylonitization and later released into a dense fracture mesh that allowed them to migrate through the mylonitic horizon close to the plate interface.We finally propose that the fracture mesh might represent the field evidence of past episodic tremors or ‘slow earthquakes’ triggered by high pore-fluid pressure.


Clay Minerals ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 439-449 ◽  
Author(s):  
L. Wensaas ◽  
H. F. Shaw ◽  
K. Gibbons ◽  
P. Aagaard ◽  
H. Dypvik

AbstractPore-fluid pressure gradients in Lower Tertiary to Upper Jurassic mudrocks in the Gullfaks area show significant variations, both between and within individual structural compartments. Detection and quantification of abnormal pore-pressures, based on drilling parameters and wire line logs, are significantly influenced by petrological variations in the mudrocks and do not provide adequate direct pressure indicators. Empirical models show that the degree of overpressuring in mudrocks above the Gullfaks reservoirs cannot be fully explained by processes such as shale dehydration, compaction disequilibrium, aquathermal effects or in situ hydrocarbon generation, and other processes, such as caprock failure and subsequent migration of hydrocarbons (mainly gas) into the overlying mudrocks, appear to be influential in generating the observed pattern of overpressure.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 329
Author(s):  
Albenis Pérez-Alarcón ◽  
José C. Fernández-Alvarez ◽  
Rogert Sorí ◽  
Raquel Nieto ◽  
Luis Gimeno

The combined effect of the sea surface temperature (SST) and the North Atlantic subtropical high-pressure system (NASH) in the interannual variability of the genesis of tropical cyclones (TCs) and landfalling in the period 1980–2019 is explored in this study. The SST was extracted from the Centennial Time Scale dataset from the National Oceanic and Atmospheric Administration (NOAA), and TC records were obtained from the Atlantic Hurricane Database of the NOAA/National Hurricane Center. The genesis and landfalling regions were objectively clustered for this analysis. Seven regions of TC genesis and five for landfalling were identified. Intercluster differences were observed in the monthly frequency distribution and annual variability, both for genesis and landfalling. From the generalized least square multiple regression model, SST and NASH (intensity and position) covariates can explain 22.7% of the variance of the frequency of TC genesis, but it is only statistically significant (p < 0.1) for the NASH center latitude. The SST mostly modulates the frequency of TCs formed near the West African coast, and the NASH latitudinal variation affects those originated in the Lesser Antilles arc. For landfalling, both covariates explain 38.7% of the variance; however, significant differences are observed in the comparison between each region. With a statistical significance higher than 90%, SST and NASH explain 33.4% of the landfalling variability in the archipelago of the Bahamas and central–eastern region of Cuba. Besides, landfalls in the Gulf of Mexico and Central America seem to be modulated by SST. It was also found there was no statistically significant relationship between the frequency of genesis and landfalling with the NASH intensity. However, the NASH structure modulates the probability density of the TCs trajectory that make landfall once or several times in their lifetime. Thus, the NASH variability throughout a hurricane season affects the TCs trajectory in the North Atlantic basin. Moreover, we found that the landfalling frequency of TCs formed near the West Africa coast and the central North Atlantic is relatively low. Furthermore, the SST and NASH longitude center explains 31.6% (p < 0.05) of the variance of the landfalling intensity in the archipelago of the Bahamas, while the SST explains 26.4% (p < 0.05) in Central America. Furthermore, the 5-year moving average filter revealed decadal and multidecadal variability in both genesis and landfalling by region. Our findings confirm the complexity of the atmospheric processes involved in the TC genesis and landfalling.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kodai Nakagomi ◽  
Toshiko Terakawa ◽  
Satoshi Matsumoto ◽  
Shinichiro Horikawa

An amendment to this paper has been published and can be accessed via the original article.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Joe Tien ◽  
Le Li ◽  
Ozgur Ozsun ◽  
Kamil L. Ekinci

In order to understand how interstitial fluid pressure and flow affect cell behavior, many studies use microfluidic approaches to apply externally controlled pressures to the boundary of a cell-containing gel. It is generally assumed that the resulting interstitial pressure distribution quickly reaches a steady-state, but this assumption has not been rigorously tested. Here, we demonstrate experimentally and computationally that the interstitial fluid pressure within an extracellular matrix gel in a microfluidic device can, in some cases, react with a long time delay to external loading. Remarkably, the source of this delay is the slight (∼100 nm in the cases examined here) distension of the walls of the device under pressure. Finite-element models show that the dynamics of interstitial pressure can be described as an instantaneous jump, followed by axial and transverse diffusion, until the steady pressure distribution is reached. The dynamics follow scaling laws that enable estimation of a gel's poroelastic constants from time-resolved measurements of interstitial fluid pressure.


The so-called high pressure “ CO ” bands—or high pressure carbon bands, as they are better called—were first found by Fowler* in 1910 in tubes containing carbon monoxide at relatively high pressures. The system was described as consisting of some six apparently double-headed bands degraded to the violet, their wave-lengths being approximately at— 6441 6420 } 5897 5878 } 5431 5413 } 5030 5015 } 4679 4663 } 4365 4353 } Å. U. In 1923 the conditions of production of this spectrum were further investigated by Merton and Johnson who obtained the bands with considerable strength by condensed discharges in capillary tubes fitted with carbon electrodes, and containing CO at pressures of 5 mm. and more. It was found that while the high pressure bands and the Swan bands were mingled in the light from the capillary of the tube, the former bands were isolated in bluish jets where the two ends of the capillary merged into the wider parts of the tube. Further observations indicated that the introduction of a little C0 2 destroyed the bands, but that the system re-apppeared after a few minutes, in which time presumably the carbon dioxide had been reduced to monoxide by the carbon electrodes. A reproduction of these bands photographed under low dispersion is given in the above-mentioned paper. No further experimental work appears to have been done on this system, and it has not been correlated with any other band system or assigned any place in the system of electronic levels of the CO molecule. We have therefore made an attempt to photograph the system under high dispersion with a view to fine structure analysis and identification of the molecular emitter. For this purpose large discharge tubes having a bore of about 15 to 20 mm. and a length of 60 or 70 cm. were used. These had at least one of the electrodes made of carbon and were fitted with side bulbs containing caustic potash and phosphorus pentoxide and a palladium regulator. The tubes were filled with carbon monoxide to such a pressure (probably 20-40 mm.) that a condensed discharge could just be forced through by the ¼ kilowatt 15,000 volt transformer used. Some of the tubes had large side flasks attached to them, increasing thereby the volume of gas in the tube, and giving the tubes a life of 4 to 6 hours during which the high pressure bands were emitted strongly. After some such period the pressure fell below the optimum value, and deposits of carbon had accumulated on the walls of the tube. Impurities such as hydrogen, carbon dioxide, and water-vapour were found to inhibit formation of the high pressure bands, and the tube always attained its best condition after running for about an hour (removing meanwhile any little hydrogen present through the regulator). Under these conditions the wide bore is practically filled with light, and presents a remarkable appearance, as of dense pale blue puffs of smoke (showing the high pressure system), threaded by a narrow green ribbon (showing the Swan system). If side tubes having a fair capacity ( e . g ., flasks) are attached to the discharge tube the high pressure glow is capable of diffusion into these. The appearance is suggestive of an afterglow emitter, but if this is its true nature it is of very short duration. Photographs of the H. P. bands were taken in times varying from 4 to 10 hours in the first order of a 21-foot grating. The green band in the neighbourhood of λ 5000 is exceedingly faint and was not attempted. Before considering the results -obtained it will be an advantage to summarise our present knowledge of the Swan spectrum and its emitter, with which it will subsequently be shown that the high pressure carbon system is intimately related.


Sign in / Sign up

Export Citation Format

Share Document