Influence of Heat Treatment on Microstructure and Mechanical Properties of Die-Cast AZ91D Alloy with RE Elements

2014 ◽  
Vol 633-634 ◽  
pp. 98-102 ◽  
Author(s):  
Jia Wei Yuan ◽  
Xing Gang Li ◽  
Kui Zhang ◽  
Ting Li ◽  
Yong Jun Li ◽  
...  

The effect of online solution and subsequent age heat treatment on microstructure and mechanical properties of die-cast AZ91D +1wt. %RE alloy were researched. The results indicated that online solution heat treatment led to inhibit some β-Mg17Al12 phase precipitation, and remained the Al element in matrix plays a role of solid solution strengthening. The online solution samples were aged at 160°C, 180°Cand 200°C. Microstructure results suggested that age treatment caused some lamellar β-Mg17Al12 phases precipitated near grain boundaries. The tensile properties of samples under air cool, online solution and subsequent age heat treatment were tested, which UTS were 194 MPa, 243 MPa and 244 MPa, and the elongation were 3.67%, 3.97% and 1.6%, respectively. The results indicated that the online solution could enhance the mechanical properties significantly, which the subsequent age heat treatment could not improve.

2007 ◽  
Vol 353-358 ◽  
pp. 718-721
Author(s):  
Ding Fei Zhang ◽  
Rong Shen Liu ◽  
Jian Peng ◽  
Wei Yuang ◽  
Hong Ju Zhang

With different heat treatment, the microstructure and mechanical properties of ZK60 magnesium alloy were investigated. It can be concluded that heat treatment has great effect on mechanical properties of ZK60. With artificial aging after extruding, the precipitation of the second phase from the supersaturated solid solution significantly improved mechanical properties. It can greatly increase yield strength of ZK60 alloy, while the tensile strength has little change. For the combination of solid solution strengthening and age hardening, two opposite factors must be considered. On one hand, the solid solution strengthening and the later precipitation strengthening is good for alloy’s strength; on the other hand, the properties decrease as the grains grew under high temperature for a long time during solution heating.


2014 ◽  
Vol 941-944 ◽  
pp. 59-65
Author(s):  
Jia Wei Yuan ◽  
Xing Gang Li ◽  
Kui Zhang ◽  
Yong Jun Li ◽  
Ming Long Ma ◽  
...  

The effect of mixed RE elements (Y, Nd, Gd ) on the microstructure and tensile properties of die-cast AZ91D alloy were investigated. The results indicated that the content of mixed RE elements lead to the change of the formation of Al▔RE compounds and reduction of the fraction of β-Mg17Al12 phase. The grain size of the alloy added 1.0wt. % RE became smaller than die-cast AZ91D and AZ91D+2.0wt. % RE alloys. The UTS of die-cast AZ91D+xRE(x=0 wt. %, 1.0wt. %, 2.0 wt. %) alloys were 204MPa, 194MPa, 203.6MPa at room temperature, respectively. Moreover, RE addition resulted in fracture behaviors changed.


2010 ◽  
Vol 436 ◽  
pp. 179-184 ◽  
Author(s):  
Mitsuo Niinomi ◽  
Masaaki Nakai ◽  
Toshikazu Akahori ◽  
Harumi Tsutsumi

Oxygen plays very important roles in titanium and its alloys. Solute oxygen in titanium alloys leads to solid solution strengthening, suppressing the precipitation of the athermal omegaor orthorhombic martensite phase, enhancing the formation of the -case, etc. The proper using oxygen is effective to improve the mechanical functionalities of titanium alloys. However, the role of oxygen in titanium alloys is still not well understood. Therefore, the effect of oxygen on the mechanical functionalities such as strength-ductility balance, hardness, and Young’s modulus in Ti-29nb-13Ta-4.6Zr was investigated.


2007 ◽  
Vol 26-28 ◽  
pp. 485-488 ◽  
Author(s):  
Kee Ahn Lee ◽  
Sung Jun Kim ◽  
Moon Chul Kim

This work sought to examine the suitability of twin roll strip casting for Ag-27%Cu- 25%Zn-3%Sn brazing alloy (BAg-7A) and to investigate the mechanical properties and microstructure of the strip. The effect of aging heat treatment on the properties was also studied. This new manufacturing process has applications in the production of the brazing alloy. XRD and microstructural analysis of the Ag-27%Cu-25%Zn-3%Sn strip represented eutectic microstructure of a Cu-rich phase and a Ag-rich matrix regardless of heat treatment. The results of mechanical tests showed tensile strength of 470MPa, a significant enhancement; and an 18% elongation of the twin roll casted strip, due mainly to the solid solution strengthening of Zn atoms (~20%) in the Cu-rich phases. Tensile results showed gradually decreasing strengths and increasing elongation with aging heat treatment. Microstructural evolution and fractography were also investigated and related to the mechanical properties.


2015 ◽  
Vol 817 ◽  
pp. 645-650
Author(s):  
Qiong Zhao ◽  
Xiao Ge Zhang ◽  
Ye Fan ◽  
Guo Yi Qin ◽  
Si Yong Xu ◽  
...  

The effects of cold rolling, solid solution, aging and annealing treatment on Pt-0.7Ti microalloy were investigated in this study. The microstructures of Pt-0.7Ti microalloy and the precipitated ordered phase Pt8Ti were observed and analyzed by OM, TEM, XRD. The mechanical properties of the alloy were evaluated Vicker micro-hardness. The results showed that micro amount of Ti was an effective element for solid-solution strengthening of Pt, the micro-hardness of 97% deformation for ST and ST+AG samples increased to 214HVand 224HV, respectively, which almost are double that of pure Pt. Micro-amount of long range ordered phase Pt8Ti was precipitated during the heat treatment, but the effect of order hardening in Pt-0.7Ti microalloy was not obvious. The microhardness by large rolling deformation for quenched samples almost unchanged after an annealing below 500°C for 1h, but decreased significantly at 700°C, and the recrystallization temperature was risen by 200°C than that of pure Pt.


2014 ◽  
Vol 1043 ◽  
pp. 17-21 ◽  
Author(s):  
Ravi Kant ◽  
Ashish Selokar ◽  
Vijaya Agarwala ◽  
U. Prakash

The effect of carbon addition on Fe-22.0Al-5.0Ti alloy on structure and properties has been investigated. Microstructural and phase analysis have been investigated by using optical microscopy, scanning electron microscope (SEM) equipped with EDAX. For low carbon addition (0.1 wt.%), two-phase microstructure consisting of precipitates of TiC in B2 matrix. The presence of large amount of carbon (1.0 or 1.5 wt.%) resulted formation of Fe3AlC0.5 and TiC precipitates in B2 matrix. The results show that the mechanical properties of Fe-22.0Al-5.0Ti increased with increase in the carbon content and strongly depend upon nature and volume fraction of different precipitates. The volume fraction of precipitates increased with increase in the content of carbon. The behavior of Fe-22.0Al-5.0Ti alloy was explained by the combined effect of precipitation hardening and solid solution strengthening. The main effect of addition of carbon related to improvement in the compressive strength without loss in the ductility. The decrease in the wear rate is mainly attributed to the high hardness of the composites and as well hard TiC play a role of load carrying.


Sign in / Sign up

Export Citation Format

Share Document