Garlic Peel as Adsorbent for the Removal of Methylene Blue from Aqueous Solution

2014 ◽  
Vol 694 ◽  
pp. 367-371 ◽  
Author(s):  
Cheng You Ma ◽  
Zhen Li ◽  
Wan He Zhao ◽  
Ying Xu ◽  
Guang Rui Cui ◽  
...  

A new biosorbent prepared by using garlic peel as the raw material was investigated for the removal of methylene blue (MB) from aqueous solution. Results showed that adsorption of MB on garlic peel gel was highly pH-dependent, and equilibrium was attained in 10 min. The adsorption capacity is 440 mg MB per gram of garlic peel gel. The column adsorption results show that MB can be completely removed from aqueous solution, and 1.0 M HCl is effective to elute the adsorbed MB off the column and condense the initial MB solution to more than 40 times. The prepared garlic gel exhibits as a potential low-cost and effective adsorbent for dyes removal from waste water.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1443
Author(s):  
Yi Wei ◽  
Wei Chen ◽  
Chuanfu Liu ◽  
Huihui Wang

It is challenging work to develop a low-cost, efficient, and environmentally friendly Cr(VI) adsorbent for waste water treatment. In this paper, we used hemicelluloses from chemical fiber factory waste as the raw material, and prepared two kinds of carbon materials by the green hydrothermal method as adsorbent for Cr(VI). The results showed that hemicelluloses hydrothermally treated with citric acid (HTC) presented spherical shapes, and hemicelluloses hydrothermally treated with ammonia solution (HTC-NH2) provided spongy structures. The adsorption capacity of the samples can be obtained by the Langmuir model, and the adsorption kinetics could be described by the pseudo-second-order model at pH 1.0. The maximum adsorption capacity of HTC-NH2 in the Langmuir model is 74.60 mg/g, much higher than that of HTC (61.25 mg/g). The green hydrothermal treatment of biomass with ammonia solution will provide a simple and feasible way to prepare adsorbent for Cr(VI) in waste water treatment.


Author(s):  
Mohammad Abul Hossain ◽  
Md. Mahbbat Ali ◽  
Tajmeri Selima Akhter Islam

Dyes are commonly found in the effluents of many industries. The effectiveness of adsorption for the removal of dye from wastewaters has been made it an ideal alternative to other expensive treatment methods. Continuous column adsorption is more affective than batch adsorption. A comparative column adsorption study was performed using three different low cost adsorbents for the removal of methylene blue from synthetic wastewater. Sand was collected from Cox’s Bazar, and sugarcane bagasse and used black tea leaves were locally prepared in laboratory. Three columns were designed for different adsorbents maintaining all conditions were to be approximately similar. UV-vis spectroscopic method was used for analysis of methylene blue in solution. Column adsorption experiments were performed to investigate the comparison of breakthrough curves and exhaust capacity of three different adsorbents. Column study shows that the adsorption capacity of used black tea leaves is highest. The adsorption capacity of bagasse is lower than tea leaves but higher than sand.


2015 ◽  
Vol 1130 ◽  
pp. 685-688
Author(s):  
Rui Yi Fan ◽  
Qing Ping Yi ◽  
Qing Lin Zhang ◽  
Zheng Rong Luo

A biosorbent was prepared by treating the persimmon (Diospyros kaki Thunb.) fallen leaves with sodium hydroxide (NaOH). The NaOH concentration and stirring period for the preparation of the biosorbent were adjusted to optimise the Cd(I) adsorption capacity of the biosorbents. Removal of highly toxic Cadmium metal ions from water system using the optimal biosorbent named ‘NPFL’ was investigated using a mimic industrial column. The result showed that NPFL could remove Cd(II) in large quantities from aqueous solution with coexisting metal ions. The raw material, NPFL and Cd(II) loaded NPFL were characterized by SEM-EDS. The reusability of NPFL was also studied by batch adsorption-desorption test.


2016 ◽  
Vol 75 (2) ◽  
pp. 350-357
Author(s):  
Graham Dawson ◽  
Wei Chen ◽  
Luhua Lu ◽  
Kai Dai

The adsorption properties of two nanomorphologies of trititanate, nanotubes (TiNT) and plates (TiNP), prepared by the hydrothermal reaction of concentrated NaOH with different phases of TiO2, were examined. It was found that the capacity for both morphologies towards methylene blue (MB), an ideal pollutant, was extremely high, with the TiNP having a capacity of 130 mg/g, higher than the TiNT, whose capacity was 120 mg/g at 10 mg/L MB concentration. At capacity, the well-dispersed powders deposit on the floor of the reaction vessel. The two morphologies had very different structural and adsorption properties. TiNT with high surface area and pore volume exhibited exothermic monolayer adsorption of MB. TiNP with low surface area and pore volume yielded a higher adsorption capacity through endothermic multilayer adsorption governed by pore diffusion. TiNP exhibited a higher negative surface charge of −23 mV, compared to −12 mV for TiNT. The adsorption process appears to be an electrostatic interaction, with the cationic dye attracted more strongly to the nanoplates, resulting in a higher adsorption capacity and different adsorption modes. We believe this simple, low cost production of high capacity nanostructured adsorbent material has potential uses in wastewater treatment.


2019 ◽  
Vol 7 (2) ◽  
pp. 240-246
Author(s):  
Kaur Harpreet ◽  
Kaur Harpreet ◽  
Vandana Kamboj ◽  
Vandana Kamboj

Water is the most crucial thing to mankind and so its contamination by various agencies is posing a threat to the natural balance. So, in the present work, the efficiency of various adsorbents derived from plant waste, to remove different dyes from aqueous solution was evaluated. Parameters for study were contact time, concentration and pH. Various combinations of plant ashes were used for the study. It was found that adsorbent prepared from the combination of orange peels, pomegranate and banana peels ashes, exhibited good adsorption capacity for methylene blue, congo red and crystal violet. All these dyes were completely removed from the aqueous solution while methyl orange was not removed. Congo red was removed completely within 40 min of contact with the adsorbent while methyl orange took 3 hrs to be removed to the extent of 48% only. The adsorption coefficient of congo red was found to be 2.33 while value for methylene blue and crystal violet was 1 and 1.66 respectively. The characterization of adsorbent was done by Scanning Electron Microscopy and IR spectroscopy. SEM image revealed the surface of adsorbent to be made of differential pores. From the results it became evident that the low-cost adsorbent could be used as a replacement for costly traditional methods of removing colorants from water.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


2020 ◽  
Vol 9 (3) ◽  
pp. 9-14
Author(s):  
Hao Pham Van ◽  
Linh Ha Xuan ◽  
Oanh Phung Thi ◽  
Hong Phan Ngoc ◽  
Huy Nguyen Nhat ◽  
...  

This report presents the effect of synthesis conditions on the synthesis of graphene nanosheets via electrochemical exfoliation method for adsorbing methylene blue from aqueous solution. Oxygen-containing functional groups and defects in the material were characterized by Raman and X-ray photoelectron spectroscopy (XPS). As a result, by using voltage of 15 V, (NH4)2SO4 (5%, 250 mL) and KOH (7.5%, 250 mL), the obtained material showed the highest MB adsorption capacity due to the high densities of oxygen-containing groups and defects comparison to other conditions.


Author(s):  
Ahmad Faris Fauzi ◽  
Lisa Utami

The biosorption characteristic of Cd(II) ions from aqueous solution using Lengkuas Merah (Alpinia Gralanga) were investigated as a function of pH. The maximum biosorption capacity of a Lengkuas Merah (Alpinia Gralanga) for Cd(II) was found to be 18,37 mg/L and 91,85% at optimum pH was 10. At pH 2 to 10 the biosorption of Cd ions tends to increase. The result showed that the lengkuas merah  can be evaluated as an alternative biosorbent to treatment waste water containing Cd(II). A Lengkuas Merah is low cost and has considerable high biosorption capacity.


2015 ◽  
Vol 1120-1121 ◽  
pp. 343-346
Author(s):  
Cai Ning Zhang ◽  
Xu Man Wang

By means of solution polymerization, a series of cross-linked starch-g-polyacrylamide/ montmorillonite (St-g-PAM/MMT) nanocomposites were prepared and used to adsorb methylene blue (MB). The effects of different preparation conditions on the adsorption capacity of the nanocomposites were investigated. The experimental results demonstrated that the prepared St-g-PAM/MMT nanocomposites were effective adsorbents for removal of MB from aqueous solution. Furthermore, adsorption capacity increased with the MMT contents up to 14% and decreased as the MMT contents further increased. Adsorption capacity increased with the increasing of the ratio of starch to acrylamide, whereas adsorption capacity decreased with the increasing of crosslinking agent contents.


2019 ◽  
Vol 6 (9) ◽  
pp. 190523 ◽  
Author(s):  
Lu Luo ◽  
Xi Wu ◽  
Zeliang Li ◽  
Yalan Zhou ◽  
Tingting Chen ◽  
...  

Activated carbon (AC) was successfully prepared from low-cost forestry fir bark (FB) waste using KOH activation method. Morphology and texture properties of ACFB were studied by scanning and high-resolution transmission electron microscopies (SEM and HRTEM), respectively. The resulting fir bark-based activated carbon (ACFB) demonstrated high surface area (1552 m 2 g −1 ) and pore volume (0.84 cm 3 g −1 ), both of which reflect excellent potential adsorption properties of ACFB towards methylene blue (MB). The effect of various factors, such as pH, initial concentration, adsorbent content as well as adsorption duration, was studied individually. Adsorption isotherms of MB were fitted using all three nonlinear models (Freundlich, Langmuir and Tempkin). The best fitting of MB adsorption results was obtained using Freundlich and Temkin. Experimental results showed that kinetics of MB adsorption by our ACFB adsorbent followed pseudo-second-order model. The maximum adsorption capacity obtained was 330 mg g −1 , which indicated that FB is an excellent raw material for low-cost production of AC suitable for cationic dye removal.


Sign in / Sign up

Export Citation Format

Share Document