Removal of Reactive Dye from Artificial Textile Effluent by Corncob: An Agro Solid Waste

2014 ◽  
Vol 699 ◽  
pp. 141-145
Author(s):  
Marshahida Mat Yashim ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Noraini Razali ◽  
Mohd Shahrul Nizam Salleh ◽  
Wan Hasnidah Wan Osman

Activated carbon prepared from agro waste corn cob has been chemically treated with phosphoric acid at three different impregnation ratio by weight 0.5:1, 1.5:1 and 2.5:1. The prepared activated carbon has been utilized as the adsorbent for the removal of reactive dye, Remazol red 3BS dye from aqueous solution. Adsorption studies were carried out at four different initial dye concentration, contact time and adsorbent dosage. Equilibrium condition was attained within less than 2 hours and highest removal efficiency, 47%, was recorded for highest impregnation ratio activated carbon for initial dye concentration of 10 ppm. Higher adsorption efficiency can be achieved when the adsorbent dosage is gradually increased. The equilibrium adsorption studies shows that activated carbon impregnated at 2.5:1 impregnation ratio was very effective in adsorbing reactive dye from artificial textile effluent.

Author(s):  
Aderonke Adetutu, Okoya ◽  
Raliat Modupeola Anjous – Alao ◽  
Kehinde Nurudeen Awokoya

Sorption efficiencies of activated carbon prepared from walnut shell for the removal of Halogenated Acetonitriles (HANs) from surface water was investigated in this study, as an ethically sound-way of utilizing this unexploited abundant natural resource, and was also compared with burgoyne commercial activated carbon (BCAC). Major HANs created during the disinfection process consist of dichloroacetonitrile (DCAN) and bromoacetonitrile, (BCAN). Physicochemical properties of both raw and chlorinated water were determined using standard methods, and concentration of DCAN were determined from water treatment plant at different stages of treatment using High Performance liquid Chromatography (HPLC). Recovery experiments were carried out to validate experimental procedure. Batch adsorption experiments were carried out and different parameters such as adsorbent dosage (0.2, 0.4, 0.8 g), contact time (30, 60, 90 minutes), pH (5, 7, 9), and concentration (0.006 mg/L, 0.009 mg/L and 0.012 mg/L) were optimized for removal of DCAN using walnut shell activated carbon (WSAC). Experimental sorption data from different initial concentrations of DCAN were used to test conformity with Freundlich and Langmuir adsorption isotherms. Percentage recovery from experimental procedure is 86.01±0.62 to 100.0±0.00 for DCAN. Mean percentage adsorption efficiencies for simulation experiment is 16.670±0.467 to 41.67±1.103 for DCAN. Optimum conditions for DCAN were 0.8g adsorbent dosage, 60 minutes contact time, pH 9 and 0.012 mg/L initial concentration. Optimum values of theses parameters used for adsorption of DCAN in raw and chlorinated water serving the treatment plant gave an adsorption efficiency of 69.00±1.43% and 79.00±0.03 respectively. Adsorption efficiency of BCAC gave 94.4±0.42 and 98.00±1.41 for raw and chlorinated water respectively, with a total decrease in all physicochemical parameters examined after adsorption experiment. Adsorption isotherm studies indicated that Langmuir model was more suitable for the experimental data than Freundlich isotherm model. Conclusively, the effective adsorbent properties displayed by WSAC in the removal of DCAN indicate its potentials in treatment of water contaminations.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 112 ◽  
Author(s):  
Mohd Adib Mohammad Razi ◽  
Adel Al- Gheethi ◽  
Izzatul Ashikin ZA

Excessive release of textile wastewater with heavy metals into environment has posed a great problem to the natural water system. The efficiency of the adsorption process to remove heavy metals depend on the adsorbent. The commercial activated carbon is one of the most efficient adsorbent, but the limitation lies in the high cost. Therefore, the present study aimed to investigate the efficiency of sugarcane bagasse activated carbon modified by phosphoric acid as adsorbent for the removal of zinc (Zn) and Ferum (Fe) from the textile wastewater. The adsorption process was conducted using batch method as a function for pH (2-7), contact time (30 min to 24 h) and adsorbent dosage (0.6 to 6g). The final concentrations of the metal ions were determined by ICP-MS. The results revealed that the adsorption efficiency increased with the contact time, the optimum time was recorded after 2 h. The removal percentage of Zn and Fe associated with the adsorbent dosage due to the greater surface area with optimum value of 4.0 g. The increasing of pH from 2 to 6 correlated with high adsorption efficiency, with the optimum condition at pH 5. The maximum percentage removal of Fe, Zn was 80%. These findings indicated that the SBAC is an attractive alternative adsorbent material for the metal ions removal in textile wastewater.


2014 ◽  
Vol 587-589 ◽  
pp. 616-619
Author(s):  
Zheng Wang ◽  
Dong Zhang ◽  
Ping Xia ◽  
Hui Ye ◽  
Wen Qi Zhou

The removal of geosmin by powered activated carbon (PAC) was studied at laboratory to select suitable PAC type and the removal efficiencies of geosmin by PAC in different application point as an emergency method were evaluated. The adsorption efficiency of coal-based PAC on geosmin was superior to that of bamboo-based PAC. The contact time and PAC dose were two important factors that affect the removal effect of geosmin. Geosmin could be controled below 10ng/L at 200ng/L of initial concentration.


2013 ◽  
Vol 330 ◽  
pp. 112-116 ◽  
Author(s):  
Nabilah A. Lutpi ◽  
N. Najihah Jamil ◽  
C.K. Kairulazam C.K. Abdullah ◽  
Yee Shian Wong ◽  
Soon An Ong ◽  
...  

The adsorption of Methylene Blue (MB) and Acid Orange 7 (AO7) dye onto Ananas Comosus Mixed Peels and Leaves (ACMPL) were carried out by conducting four different parameters such as initial concentration, pH, dosage of adsorbent, and contact time. Effect of initial concentration for both dyes showed that higher initial concentration would take longer contact time to attain equilibrium due to higher amount of adsorbate molecules. The effect of pH showed highest percentage removal for MB is at pH 9 which is 95.81%. Meanwhile for AO7 the highest percentage removal is 31.06% at pH 3. The percentage removal of MB had reached the equilibrium at dosage 0.5g while AO7 keep increasing with the increment of adsorbent dosage. The percentage removal of MB and AO7 had increased until hour 2.5 which was from 72.5% to 86.93% and 19.441% to 36.89% respectively and reached equilibrium at 3 hour contact time.


Author(s):  
Li Cong ◽  
Lingling Feng ◽  
Xinlai Wei ◽  
Jie Jin ◽  
Ke Wu

The activated carbon was prepared from sycamore bark by activation of zinc chloride. The absorbing effect of activated carbon on Congo red wastewater is studied. The characteristics of sycamore bark activated carbon were characterized by SEM and BET. The effects of adsorbent dosage, time, and shaking speed on the adsorption properties of Congo red by sycamore bark activated carbon were studied. The isotherm, kinetics, and thermodynamics of adsorption were explored. The results revealed that the activated carbon contain a large apparent mesopores. Adsorption efficiency was increased with enhancing the adsorption dosage and time. The removal rate of Conge red reached to 98.2% under room temperature with adsorbent dosage of 3.0 g/L, adsorption time of 120 min, shaking speed of 60r/min. The adsorption of Congo red on sycamore bark activated carbon was followed Langmuir isotherm model and Lagergren pseudo-second order kinetics model. The adsorption was spontaneous, endothermic, and the entropy was increasing in the adsorption process.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2617
Author(s):  
Inas A. Ahmed ◽  
Hala S. Hussein ◽  
Ahmed H. Ragab ◽  
Najla AlMasoud ◽  
Ayman A. Ghfar

In the present investigation, green nano-zerovalent copper (GnZVCu), activated carbon (AC), chitosan (CS) and alginate (ALG) nanocomposites were produced and used for the elimination of chromium (VI) from a polluted solution. The nanocomposites GnZVCu/AC-CS-alginate and AC-CS-alginate were prepared. Analysis and characterization were performed by the following techniques: X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The SEM analysis revealed that the nanocomposites are extremely mesoporous, which leads to the greatest adsorption of Cr+6 (i.e., 97.5% and 95%) for GnZVCu/AC-CS-alginate and AC-CS-alginate, respectively. The adsorption efficiency was enhanced by coupling GnZVCu with AC-CS-alginate with a contact time of 40 min. The maximum elimination of Cr+6 with the two nanocomposites was achieved at pH 2. The isotherm model, Freundlich adsorption isotherm and kinetics model and P.S.O.R kinetic models were discovered to be better suited to describe the exclusion of Cr+6 by the nanocomposites. The results suggested that the synthesized nanocomposites are promising for the segregation of Cr+6 from polluted solutions, specially the GnZVCu/AC-CS-alginate nanocomposite.


Author(s):  
Mohamed A. Elsayed ◽  
O.A. Zalat

This study illustrates the preparation of activated carbon (AC) from Corn Cob (CC) via microwave assisted K2CO3 activation. The effect of operational parameters including chemical impregnation ratio (0.25-1.25), microwave power (90 – 800 W) and irradiation time (1 – 9 min) on the carbon yield and adsorption capability of derived Corn Cob Activated Carbon (CCAC) were investigated. The results indicated that the optimum conditions were as follows: microwave power of 600W, microwave radiation time of 5 min and the impregnation ratio of K2CO3 was 0.75 g/g. The optimum conditions resulted in CCAC with a maximum adsorption capacity of 275.32 mg/g for MB and carbon yield of 27.09%. The BET surface area, Langmuir surface area and total pore volume were determined to be 765 m2/g, 834 m2/g and 0.43 cm3/g, respectively.


2021 ◽  
Vol 68 (4) ◽  
pp. 791-803
Author(s):  
Lei Yao ◽  
Chao Hong ◽  
Hani Dashtifard ◽  
Hossein Esmaeili

This study aimed to determine the best adsorbent among Moringa oleifera-derived activated carbon (AC), eggshell-derived CaO nanoparticles and CaO/Fe3O4 for sodium (Na+) removal from aqueous media. In the first step, the appropriate adsorbent for sodium adsorption was determined among the three adsorbents, which the results showed that the AC had the highest sorption efficiency. Then, response surface methodology (RSM) was used to evaluate the impact of different factors on the Na+ ion sorption efficiency using the AC. The highest removal efficiency was obtained to be 95.91% at optimum conditions such as pH of 11, contact time of 45 min, temperature of 25 °C, sodium ion concentration of 900 mg/L, and adsorbent dosage of 5 g/L. Also, the best conditions using the genetic algorithm was obtained at contact time of 94.97 min, adsorbent dosage of 3.52 g/L, Na+ ion concentration of 939.92 mg/L and pH value of 10.92. Moreover, the maximum sorption capacity using the Langmuir model was obtained to be 249.67 mg/g, which was a significant value. Besides, the equilibrium and kinetic studies indicated that the experimental data of sodium adsorption process were fitted well with the Langmuir isotherm model and the pseudo-second-order kinetic model, respectively. Furthermore, the thermodynamic study indicated that the sorption process was endothermic. Generally, among the three adsorbents used, activated carbon with a high removal efficiency and significant sorption capacity can be considered as a promising adsorbent for the removal of sodium from wastewater on an industrial scale.


2012 ◽  
Vol 620 ◽  
pp. 224-229
Author(s):  
Mohd Nazri Idris ◽  
Zainal Arifin Ahmad ◽  
Mohd Azmier Ahmad

In the present work, activated carbon was prepared from rubber seed coat by physicochemical activation for the removal of Remazol Brilliant Blue R (RBBR) dye from aqueous solution. The effects of dye initial concentration, contact time, solution temperature and pH on RBBR adsorption onto rubber seed coat based activated carbon (RSCAC) were investigated. The adsorption uptake was found to increase with increase in initial dye concentration and contact time. Change in temperature and pH also played an important role to RBBR adsorption capability. Study showed that rubber seed coat is suitable to be used as activated carbon precursor.


Sign in / Sign up

Export Citation Format

Share Document