scholarly journals Removal of Heavy Metals from Textile Wastewater Using Sugarcane Bagasse Activated Carbon

2018 ◽  
Vol 7 (4.30) ◽  
pp. 112 ◽  
Author(s):  
Mohd Adib Mohammad Razi ◽  
Adel Al- Gheethi ◽  
Izzatul Ashikin ZA

Excessive release of textile wastewater with heavy metals into environment has posed a great problem to the natural water system. The efficiency of the adsorption process to remove heavy metals depend on the adsorbent. The commercial activated carbon is one of the most efficient adsorbent, but the limitation lies in the high cost. Therefore, the present study aimed to investigate the efficiency of sugarcane bagasse activated carbon modified by phosphoric acid as adsorbent for the removal of zinc (Zn) and Ferum (Fe) from the textile wastewater. The adsorption process was conducted using batch method as a function for pH (2-7), contact time (30 min to 24 h) and adsorbent dosage (0.6 to 6g). The final concentrations of the metal ions were determined by ICP-MS. The results revealed that the adsorption efficiency increased with the contact time, the optimum time was recorded after 2 h. The removal percentage of Zn and Fe associated with the adsorbent dosage due to the greater surface area with optimum value of 4.0 g. The increasing of pH from 2 to 6 correlated with high adsorption efficiency, with the optimum condition at pH 5. The maximum percentage removal of Fe, Zn was 80%. These findings indicated that the SBAC is an attractive alternative adsorbent material for the metal ions removal in textile wastewater.

2016 ◽  
Vol 6 (3) ◽  
pp. 377-388 ◽  
Author(s):  
Ibrahim Umar Salihi ◽  
Shamsul Rahman Muhamed Kutty ◽  
Muhamed Hasnain Isa ◽  
Nasir Aminu

Pollution caused by heavy metals has become a serious problem to the environment nowadays. The treatment of wastewater containing heavy metals continues to receive attention because of their toxicity and negative impact on the environment. Recently, various types of adsorbents have been prepared for the uptake of heavy metals from wastewater through the batch adsorption technique. This study focused on the removal of zinc from aqueous solution using microwave incinerated sugarcane bagasse ash (MISCBA). MISCBA was produced using microwave technology. The influence of some parameters such as pH, contact time, initial metal concentration and adsorbent dosage on the removal of zinc was investigated. The competition between H+ and metal ions has affected zinc removal at a low pH value. Optimum conditions for zinc removal were achieved at pH 6.0, contact time 180 min and adsorbent dosage of 10 g/L, respectively. The maximum adsorption capacity for the removal of zinc was found to be 28.6 mg/g. The adsorption process occurred in a multilayered surface of the MISCBA. Chemical reaction was the potential mechanism that regulates the adsorption process. MISCBA can be used as an effective and cheap adsorbent for treatment of wastewater containing zinc metal ions.


2019 ◽  
Vol 233 (2) ◽  
pp. 201-223 ◽  
Author(s):  
Khalida Naseem ◽  
Rahila Huma ◽  
Aiman Shahbaz ◽  
Jawaria Jamal ◽  
Muhammad Zia Ur Rehman ◽  
...  

Abstract This study describes the adsorption of Cu (II), Co (II) and Ni (II) ions from wastewater on Vigna radiata husk biomass. The ability of adsorbent to capture the metal ions has been found to be in the order of Ni (II)>Co (II) and Cu (II) depending upon the size and nature of metal ions to be adsorbed. It has been observed that percentage removal of Cu (II), Co (II) and Ni (II) ions increases with increase of adsorbent dosage, contact time and pH of the medium but up to a certain extent. Maximum adsorption capacity (qmax) for Cu (II), Co (II) and Ni (II) ions has been found to be 11.05, 15.04 and 19.88 mg/g, respectively, under optimum conditions of adsorbent dosage, contact time and pH of the medium. Langmuir model best fits the adsorption process with R2 value approaches to unity for all metal ions as compared to other models because adsorption sites are seemed to be equivalent and only monolayer adsorption may occur as a result of binding of metal ion with a functional moiety of adsorbent. Pseudo second order kinetic model best interprets the adsorption process of Cu (II), Co (II) and Ni (II) ions. Thermodynamic parameters such as negative value of Gibbs energy (∆G°) gives information about feasibility and spontaneity of the process. Adsorption process was found to be endothermic for Cu (II) ions while exothermic for Co (II) and Ni (II) ions as signified by the value of enthalpy change (∆H°). Husk biomass was recycled three times for removal of Ni (II) from aqueous medium to investigate its recoverability and reusability. Moreover V. radiata husk biomass has a potential to extract Cu (II) and Ni (II) from electroplating wastewater to overcome the industrial waste water pollution.


Author(s):  
Li Cong ◽  
Lingling Feng ◽  
Xinlai Wei ◽  
Jie Jin ◽  
Ke Wu

The activated carbon was prepared from sycamore bark by activation of zinc chloride. The absorbing effect of activated carbon on Congo red wastewater is studied. The characteristics of sycamore bark activated carbon were characterized by SEM and BET. The effects of adsorbent dosage, time, and shaking speed on the adsorption properties of Congo red by sycamore bark activated carbon were studied. The isotherm, kinetics, and thermodynamics of adsorption were explored. The results revealed that the activated carbon contain a large apparent mesopores. Adsorption efficiency was increased with enhancing the adsorption dosage and time. The removal rate of Conge red reached to 98.2% under room temperature with adsorbent dosage of 3.0 g/L, adsorption time of 120 min, shaking speed of 60r/min. The adsorption of Congo red on sycamore bark activated carbon was followed Langmuir isotherm model and Lagergren pseudo-second order kinetics model. The adsorption was spontaneous, endothermic, and the entropy was increasing in the adsorption process.


2019 ◽  
Vol 9 (1) ◽  
pp. 9-17
Author(s):  
Batseba Taihuttu ◽  
V Kayadoe ◽  
A Mariwy

Adsorption study of the adsorption of heavy metal ions from Fe (III) using sago dregs waste was carried out. adsorption was carried out in batches, with the mass of adsorbent is 1 g and the concentration of Fe (III) ion is 10 ppm. in this study variations in contact time were 60, 90, 120, 150 and 180 minutes to determine the kinetic suitable for the adsorption process of ion Fe (III) and the capacity and efficiency of sago dregs adsorption. The results showed that the adsorption of ion fe (III) using sago dregs followed pseudo second-order kinetics with R2 values that were closer to 1 that is 0,9651. adsorption of ion Fe (III) at optimum contact time of 90 minutes with adsorbent mass of 1 g obtained by adsorption capacity 0,3211 mg/g and the adsorption efficiency is 64,2%.


2013 ◽  
Vol 832 ◽  
pp. 810-815 ◽  
Author(s):  
M.S. Rosmi ◽  
S. Azhari ◽  
R. Ahmad

The use of low-cost adsorbent derived from agricultural waste has been investigated for the removal of Cd (II) from aqueous solution. This research reports the feasibility of using solid pineapple waste (SPW), sugarcane bagasse (SCB) and activated carbon (AC) derived from palm kernel for the removal of Cd (II) under different experimental conditions. Batch experiments were carried out at various pH (3-12), adsorbent dosage (0.01-2 g) and contact time (15-150 min). The maximum Cd (II) removal was shown by SPW (90%) followed by SCB (55%) and AC (30%) at pH 7 with a contact time of 120 min, adsorbent dosage of 1.0 g and at 1.0 ppm of the initial concentration of Cd (II) solution. The kinetics study shows that the adsorption process fitted the pseudo-second-order-model. The experimental data was analysed by both Freundlich and Langmuir isotherm models. It was found that the Langmuir model appears to well fit the isotherm. The Langmuir maximum adsorption capacity calculated from Langmuir for SPW, SBC and AC were 0.3332 mg/g, 0.1865 mg/g and 0.1576 mg/g respectively. The order of Cd (II) removal by the adsorbents was SPW>SCB>AC. Thus, SPW may be an alternative adsorbent for the removal of Cd (II) ions form aqueous solution. The characterization of the SPW, SCB and AC were also carried out by using Scanning Electron Microscopy (SEM) and Nitrogen Gas Adsorption Single Point Surface Area Analyzer (BET).


2014 ◽  
Vol 699 ◽  
pp. 141-145
Author(s):  
Marshahida Mat Yashim ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Noraini Razali ◽  
Mohd Shahrul Nizam Salleh ◽  
Wan Hasnidah Wan Osman

Activated carbon prepared from agro waste corn cob has been chemically treated with phosphoric acid at three different impregnation ratio by weight 0.5:1, 1.5:1 and 2.5:1. The prepared activated carbon has been utilized as the adsorbent for the removal of reactive dye, Remazol red 3BS dye from aqueous solution. Adsorption studies were carried out at four different initial dye concentration, contact time and adsorbent dosage. Equilibrium condition was attained within less than 2 hours and highest removal efficiency, 47%, was recorded for highest impregnation ratio activated carbon for initial dye concentration of 10 ppm. Higher adsorption efficiency can be achieved when the adsorbent dosage is gradually increased. The equilibrium adsorption studies shows that activated carbon impregnated at 2.5:1 impregnation ratio was very effective in adsorbing reactive dye from artificial textile effluent.


Author(s):  
Aderonke Adetutu, Okoya ◽  
Raliat Modupeola Anjous – Alao ◽  
Kehinde Nurudeen Awokoya

Sorption efficiencies of activated carbon prepared from walnut shell for the removal of Halogenated Acetonitriles (HANs) from surface water was investigated in this study, as an ethically sound-way of utilizing this unexploited abundant natural resource, and was also compared with burgoyne commercial activated carbon (BCAC). Major HANs created during the disinfection process consist of dichloroacetonitrile (DCAN) and bromoacetonitrile, (BCAN). Physicochemical properties of both raw and chlorinated water were determined using standard methods, and concentration of DCAN were determined from water treatment plant at different stages of treatment using High Performance liquid Chromatography (HPLC). Recovery experiments were carried out to validate experimental procedure. Batch adsorption experiments were carried out and different parameters such as adsorbent dosage (0.2, 0.4, 0.8 g), contact time (30, 60, 90 minutes), pH (5, 7, 9), and concentration (0.006 mg/L, 0.009 mg/L and 0.012 mg/L) were optimized for removal of DCAN using walnut shell activated carbon (WSAC). Experimental sorption data from different initial concentrations of DCAN were used to test conformity with Freundlich and Langmuir adsorption isotherms. Percentage recovery from experimental procedure is 86.01±0.62 to 100.0±0.00 for DCAN. Mean percentage adsorption efficiencies for simulation experiment is 16.670±0.467 to 41.67±1.103 for DCAN. Optimum conditions for DCAN were 0.8g adsorbent dosage, 60 minutes contact time, pH 9 and 0.012 mg/L initial concentration. Optimum values of theses parameters used for adsorption of DCAN in raw and chlorinated water serving the treatment plant gave an adsorption efficiency of 69.00±1.43% and 79.00±0.03 respectively. Adsorption efficiency of BCAC gave 94.4±0.42 and 98.00±1.41 for raw and chlorinated water respectively, with a total decrease in all physicochemical parameters examined after adsorption experiment. Adsorption isotherm studies indicated that Langmuir model was more suitable for the experimental data than Freundlich isotherm model. Conclusively, the effective adsorbent properties displayed by WSAC in the removal of DCAN indicate its potentials in treatment of water contaminations.


Author(s):  
Joshua O. Ighalo ◽  
Lois T. Arowoyele ◽  
Samuel Ogunniyi ◽  
Comfort A. Adeyanju ◽  
Folasade M. Oladipo-Emmanuel ◽  
...  

Background: The presence of pollutants in polluted water is not singularized hence pollutant species are constantly in competition for active sites during the adsorption process. A key advantage of competitive adsorption studies is that it informs on the adsorbent performance in real water treatment applications. Objective: This study aims to investigate the competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) using elephant grass (Pennisetum purpureum) biochar and hybrid biochar from LDPE. Method: The produced biochar was characterised by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The effect of adsorption parameters, equilibrium isotherm modelling and parametric studies were conducted based on data from the batch adsorption experiments. Results: For both adsorbents, the removal efficiency was >99% over the domain of the entire investigation for dosage and contact time suggesting that they are very efficient for removing multiple heavy metals from aqueous media. It was observed that removal efficiency was optimal at 2 g/l dosage and contact time of 20 minutes for both adsorbent types. The Elovich isotherm and the pseudo-second order kinetic models were best-fit for the competitive adsorption process. Conclusion: The study was able to successfully reveal that biomass biochar from elephant grass and hybrid biochar from LDPE can be used as effective adsorbent material for the removal of heavy metals from aqueous media. This study bears a positive implication for environmental protection and solid waste management.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mulu Berhe Desta

Adsorption of heavy metals (Cr, Cd, Pb, Ni, and Cu) onto Activated Teff Straw (ATS) has been studied using batch-adsorption techniques. This study was carried out to examine the adsorption capacity of the low-cost adsorbent ATS for the removal of heavy metals from textile effluents. The influence of contact time, pH, Temperature, and adsorbent dose on the adsorption process was also studied. Results revealed that adsorption rate initially increased rapidly, and the optimal removal efficiency was reached within about 1 hour. Further increase in contact time did not show significant change in equilibrium concentration; that is, the adsorption phase reached equilibrium. The adsorption isotherms could be fitted well by the Langmuir model. The value in the present investigation was less than one, indicating that the adsorption of the metal ion onto ATS is favorable. After treatment with ATS the levels of heavy metals were observed to decrease by 88% (Ni), 82.9% (Cd), 81.5% (Cu), 74.5% (Cr), and 68.9% (Pb). Results indicate that the freely abundant, locally available, low-cost adsorbent, Teff straw can be treated as economically viable for the removal of metal ions from textile effluents.


2021 ◽  
Author(s):  
Abdulkareem AS ◽  
Hamzat WA ◽  
Tijani JO ◽  
Bankole MT ◽  
Titus Egbosiuba ◽  
...  

Abstract Comparative adsorption study of some toxic metals (Ni, Fe, Cu, Cd, and Pb) from battery industrial effluent by purified and polyethylene glycol-modified carbon nanotubes (CNTs) is reported. The as-prepared CNTs via chemical vapour deposition method (A-CNTs), its acid purified form (P-CNTs), and polyethylene glycol functionalized form (PEG-CNTs) were characterized by HRTEM, BET, HRSEM, FTIR and XRD. The HRSEM and HRTEM micrograph revealed the formation of multi-walled tubular network structures of different inner and outer diameter. The BET study of PEG-CNTs and purified CNTs showed surface areas of 970.81 m2/g and 781.88 m2/g, respectively. The nanomaterials batch adsorption effect of various parameters such as contact time, nano-adsorbent dosage and temperature was conducted. The optimum equilibrium to achieve maximum removal of Cd (83.41 %), Ni (92.79 %), Fe (95.93%), Pb (97.16 %) Cu (99.9 9%) using PEG-CNTs was 90 min of contact time, 0.3 g of nano-adsorbent dosage and 60 oC temperature. While the maximum percentage removal efficiencies accomplished using P-CNTs under the same applied conditions were Cd (78.64 %), Ni (76.12 %), Fe (92.87 %), Pb (90.7 2%) Cu (99.09 %). PEG-CNTs was seen as more effective than P-CNTs. Adsorption data of Ni on P-CNTs followed Langmuir isotherm while the adsorption equilibrium model (Freundlich isotherm) of Ni, Fe, Cu and Pb on PEG-CNTs were fitted well. However, in both cases, the sorption kinetic study followed the pseudo-second-order model. The thermodynamics showed that the removal of toxic metals from battery wastewater was spontaneous and endothermic irrespective of the nano-adsorbents. The study found that surface modification of CNTs by polyethylene glycol adequately improved the nanotubes, thus leading to relatively adsorption capacities of heavy metals from industrial battery effluent.


Sign in / Sign up

Export Citation Format

Share Document