Removal of Geosmin by Powered Activated Carbon as an Emergency Method

2014 ◽  
Vol 587-589 ◽  
pp. 616-619
Author(s):  
Zheng Wang ◽  
Dong Zhang ◽  
Ping Xia ◽  
Hui Ye ◽  
Wen Qi Zhou

The removal of geosmin by powered activated carbon (PAC) was studied at laboratory to select suitable PAC type and the removal efficiencies of geosmin by PAC in different application point as an emergency method were evaluated. The adsorption efficiency of coal-based PAC on geosmin was superior to that of bamboo-based PAC. The contact time and PAC dose were two important factors that affect the removal effect of geosmin. Geosmin could be controled below 10ng/L at 200ng/L of initial concentration.

2021 ◽  
Vol 1197 (1) ◽  
pp. 012063
Author(s):  
R Prithvi ◽  
A Aravindan ◽  
K Naga Chaitanya

Abstract The prevailing study is of the adsorption efficiency of nitrobenzene onto the activated carbon prepared from the water hyacinth by phosphoric acid activation under the considerations of effect of pH (2,4,6,8,10 and 12) of nitrobenzene sample and consequence of initial concentration (20,100 and 200mg L−1) and contact time. The samples were analysed in high performance liquid chromatography (HPLC). The outcome shows that the change in pH of the nitrobenzene sample does not impact the adsorption capacity or adsorption rate. But whereas, the increase in original concentration of nitrobenzene has shown that the adsorption of nitrobenzene was rapid at initial stages and gradually increased with time till the stability is reached with the adsorption values of 19.3, 84.7 and 158.3 for initial concentrations of 20,100 and 200mg g−1 respectively. This study indicates that activated carbon formulated from water hyacinth is efficient for the removal of the nitrobenzene from the water.


2019 ◽  
Vol 14 (4) ◽  
pp. 897-907 ◽  
Author(s):  
Hosseinali Asgharnia ◽  
Hamidreza Nasehinia ◽  
Roohollah Rostami ◽  
Marziah Rahmani ◽  
Seyed Mahmoud Mehdinia

Abstract Phenol and its derivatives are organic pollutants with dangerous effects, such as poisoning, carcinogenicity, mutagenicity, and teratogenicity in humans and other organisms. In this study, the removal of phenol from aqueous solution by adsorption on silica and activated carbon of rice husk was investigated. In this regard, the effects of initial concentration of phenol, pH, dosage of the adsorbents, and contact time on the adsorption of phenol were investigated. The results showed that the maximum removal of phenol by rice husk silica (RHS) and rice husk activated carbon (RHAC) in the initial concentration of 1 mgL−1 phenol, 2 gL−1 adsorbent mass, 120 min contact time, and pH 5 (RHS) or pH 6 (RHAC) were obtained up to 91% and 97.88%, respectively. A significant correlation was also detected between increasing contact times and phenol removal for both adsorbents (p < 0.01). The adsorption process for both of the adsorbents was also more compatible with the Langmuir isotherm. The results of this study showed that RHS and RHAC can be considered as natural and inexpensive adsorbents for water treatment.


2013 ◽  
Vol 330 ◽  
pp. 112-116 ◽  
Author(s):  
Nabilah A. Lutpi ◽  
N. Najihah Jamil ◽  
C.K. Kairulazam C.K. Abdullah ◽  
Yee Shian Wong ◽  
Soon An Ong ◽  
...  

The adsorption of Methylene Blue (MB) and Acid Orange 7 (AO7) dye onto Ananas Comosus Mixed Peels and Leaves (ACMPL) were carried out by conducting four different parameters such as initial concentration, pH, dosage of adsorbent, and contact time. Effect of initial concentration for both dyes showed that higher initial concentration would take longer contact time to attain equilibrium due to higher amount of adsorbate molecules. The effect of pH showed highest percentage removal for MB is at pH 9 which is 95.81%. Meanwhile for AO7 the highest percentage removal is 31.06% at pH 3. The percentage removal of MB had reached the equilibrium at dosage 0.5g while AO7 keep increasing with the increment of adsorbent dosage. The percentage removal of MB and AO7 had increased until hour 2.5 which was from 72.5% to 86.93% and 19.441% to 36.89% respectively and reached equilibrium at 3 hour contact time.


2020 ◽  
Vol 32 (8) ◽  
pp. 2084-2090
Author(s):  
Lam Van Tan ◽  
Hong-Tham Nguyen Thi ◽  
To-Uyen Dao Thi ◽  
Nguyen Thi Thuy Hong

A straw-activated carbon has been successfully synthesized with the high BET surface area, at 494.9240 m2/g, which is perfectly suitable for the adsorption of cephalexin antibiotic from aqueous water. It is noted that the adsorption capacity of straw-activated carbon is demonstrated by the effect of initial concentration, contact time, pH solution and dosage. The straw-activated carbon exhibited improved decontaminant efficiency towards cephalexin antibiotics. Quick and improved sorption could be attributable to the distinctive structural and compositional merits as well as the synergetic contribution of functional groups to surface material. Most interestingly, the adsorption capacity achieved at pH 6 was ~98.52%. A mechanism adsorption has been proposed to demonstrate adsorption of the straw-activated carbon (AC-S). By comparison with other studies, it is confirmed that AC-S in this study obtained a higher removal efficiency than other adsorbent materials, suggesting that straw-activated carbon may be an appropriate candidate to treat cephalexin from wastewater media


Author(s):  
Jiawei Tang ◽  
Yu Liu ◽  
Peidong Su ◽  
Jingwei Quan ◽  
Yufeng Hu ◽  
...  

Abstract This study investigated the removal of chemical oxygen demand (COD), NH4-N, and perfluorinated compounds (PFCs) in the effluent from a wastewater treatment plant (WWTP) using ZnO coated activated carbon (ZnO/AC). Results suggested that the optimal dosage of the ZnO/AC was 0.8 g/L within 240 min of contact time, at which the maximum removal efficiency of COD was approximately 86.8%, while the removal efficiencies of PFOA and PFOS reached 86.5% and 82.1%. In comparison, the removal efficiencies of NH4-N, PFBA, and PFBS were lower, at approximately 47.9%, 44.0%, and 55.4%, respectively. In addition, COD was preferentially adsorbed before PFCs and NH4-N, when the contact time ranged from 0 to 180 min, and the order of PFCs removal showed a positive correlation with C-F chain length. The kinetic study revealed that the removal of COD, NH4-N, and PFCs could be better depicted and predicted by the Lagergren quasi-second order dynamic model with high correlation coefficients, which involved liquid membrane diffusion, intraparticle diffusion, and photocatalytic reactions. The saturated ZnO/AC was finally regenerated using ultrasound for 3 h and retained excellent performance, which proved it could be considered as an effective and alternative technology.


2012 ◽  
Vol 549 ◽  
pp. 318-321 ◽  
Author(s):  
Yong Hong Wu ◽  
Qi Yu ◽  
Hong Da Xu ◽  
Zhi Yong Liu ◽  
Ming Zhu Sun ◽  
...  

The adsorption behavior of methyl orange aqueous solution was investigated on husk-based activated carbon. The effects of key factors, i.e., degassing pretreatment, adsorption time, temperature, adsorbent dosage and initial concentration, on the adsorption efficiency were measured. The kinetic adsorption curves and adsorption isotherms were fitted with theoretical model. The results show that the removal efficiency of methyl orange could be significantly improved by degassing pretreatment, prolonging the time, lowering temperature or reducing the initial concentration. In the context, adsorption equilibrium will be achieved up 90min. Furthermore, adsorption rate will be enhanced by the increase of the amount of activated carbon. In conclusion, adsorption isotherm and adsorption kinetics can be fitted well with Freundlich equation and pseudo-first Lagergren model, respectively.


2020 ◽  
Author(s):  
Can Du ◽  
Jinsheng Wang ◽  
Xin Liu ◽  
Juanting Niu

<p>In this paper, six typical adsorption materials (activated carbon, kaolin, montmorillonite, bentonite, zeolite, and attapulgite) were used to investigate the effects of adsorption time, initial concentration, pH, and temperature on the adsorption of cesium (Cs) contained in wastewater. A combination of kinetics and isotherms was used. The results revealed that, for the same adsorption time, the adsorption efficiencies of the six materials for Cs were as follows: zeolite>attapulgite>bentonite>montmorillonite>activated carbon>kaolin. The adsorption rate of zeolite to Cs ions was almost independent of the initial concentration and temperature. The removal effect of other materials improved in alkaline environments at 30℃. Attapulgite, montmorillonite, activated carbon, and kaolin could be used for the removal of Cs at low initial concentrations. The adsorptive processes utilized by the six adsorption materials were the result of a combination of various adsorption mechanisms. Among the six typical adsorption materials, zeolite, attapulgite, and bentonite had clear removal effects and could be used in practical application in which radioactive wastewater containing Cs needs to be disposed of. Our results suggest that zeolite is the best adsorption material for this purpose.</p>


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2900
Author(s):  
Alejandro Aldeguer Esquerdo ◽  
Pedro José Varo Galvañ ◽  
Irene Sentana Gadea ◽  
Daniel Prats Rico

In this study, the reduction of the pesticide simazine at an initial concentration of 0.7 mg L−1 in water has been investigated using two different technologies: adsorption with powdered and granulated activated carbon, advanced oxidation processes with ozone and finally, the combination of both technologies. The results obtained for a carbon dose of 16 mg L−1 show that powdered activated carbon, with contact times of 60 min, obtained 81% of reduction and in 24 h 92%, while granulated activated carbon at 60 min obtained a reduction of 2%, rising to 34% after 24 h of contact time. Therefore, powdered activated carbon achieves better reductions compared to granulated; when ozone was applied at a dose of 19.7 mg L−1, with a reaction time of 18 min, a reduction of 93% was obtained, achieving a better reduction in less time than with adsorption treatments; however, during oxidation, by-products of simazine were produced. In the combined treatments, with the same doses of carbon and ozone mentioned above, the treatment that starts with ozone followed by activated carbon powder is recommended due to the adsorption in the last phase reaching a 90% reduction of the simazine and its by-products in 38 min of time.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2617
Author(s):  
Inas A. Ahmed ◽  
Hala S. Hussein ◽  
Ahmed H. Ragab ◽  
Najla AlMasoud ◽  
Ayman A. Ghfar

In the present investigation, green nano-zerovalent copper (GnZVCu), activated carbon (AC), chitosan (CS) and alginate (ALG) nanocomposites were produced and used for the elimination of chromium (VI) from a polluted solution. The nanocomposites GnZVCu/AC-CS-alginate and AC-CS-alginate were prepared. Analysis and characterization were performed by the following techniques: X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The SEM analysis revealed that the nanocomposites are extremely mesoporous, which leads to the greatest adsorption of Cr+6 (i.e., 97.5% and 95%) for GnZVCu/AC-CS-alginate and AC-CS-alginate, respectively. The adsorption efficiency was enhanced by coupling GnZVCu with AC-CS-alginate with a contact time of 40 min. The maximum elimination of Cr+6 with the two nanocomposites was achieved at pH 2. The isotherm model, Freundlich adsorption isotherm and kinetics model and P.S.O.R kinetic models were discovered to be better suited to describe the exclusion of Cr+6 by the nanocomposites. The results suggested that the synthesized nanocomposites are promising for the segregation of Cr+6 from polluted solutions, specially the GnZVCu/AC-CS-alginate nanocomposite.


Author(s):  
Ishaq Yahaya Lawan ◽  
Shinggu D. Yamta ◽  
Abdurrahman Hudu ◽  
Kolo Alhaji Madu ◽  
Adamu Mohammad ◽  
...  

This study was carried out to evaluate the efficiency of metals (Pb and Co) removal from solution using Detarium microcarpum seeds as adsorbent. The effect of initial concentration and adsorbent dosage on the adsorption process of these metals were studied, the percentage removal of these metals increased with increased in weight (0.5 -2.5g) in 50ml of the solution and the adsorption efficiency increased with increasing initial metal ion concentration (0.01-0.05 moldm−3). The percentage removal obtained for Lead and Cobalt were compared. The result of adsorption were fitted to Langmuir models and coefficients indicated favorable adsorption of Pb2+ and Co2+ ions on the adsorbents. The adsorption of Pb2+ and Co2+ in aqueous solution was in the following order (1400µm>420µm>150µm). More than 55.4% of studied Lead cations were removed by 1400µm, 47.2% by 420µm and 29.8% by 150µm. While for Cobalt cations only 53.2% by 1400µm, 38.6% by 420µm and 24% by 150µm respectively, from aqueous solution it was concluded that, activated Carbon derived from Detarium microcarpum seed is good in removing both lead and cobalt ions, which make it good absorbent.


Sign in / Sign up

Export Citation Format

Share Document