scholarly journals Sorption Characteristics of Halogenated Acetonitriles (HANs) in Surface Water onto Activated Carbon Prepared from Walnut Shell

Author(s):  
Aderonke Adetutu, Okoya ◽  
Raliat Modupeola Anjous – Alao ◽  
Kehinde Nurudeen Awokoya

Sorption efficiencies of activated carbon prepared from walnut shell for the removal of Halogenated Acetonitriles (HANs) from surface water was investigated in this study, as an ethically sound-way of utilizing this unexploited abundant natural resource, and was also compared with burgoyne commercial activated carbon (BCAC). Major HANs created during the disinfection process consist of dichloroacetonitrile (DCAN) and bromoacetonitrile, (BCAN). Physicochemical properties of both raw and chlorinated water were determined using standard methods, and concentration of DCAN were determined from water treatment plant at different stages of treatment using High Performance liquid Chromatography (HPLC). Recovery experiments were carried out to validate experimental procedure. Batch adsorption experiments were carried out and different parameters such as adsorbent dosage (0.2, 0.4, 0.8 g), contact time (30, 60, 90 minutes), pH (5, 7, 9), and concentration (0.006 mg/L, 0.009 mg/L and 0.012 mg/L) were optimized for removal of DCAN using walnut shell activated carbon (WSAC). Experimental sorption data from different initial concentrations of DCAN were used to test conformity with Freundlich and Langmuir adsorption isotherms. Percentage recovery from experimental procedure is 86.01±0.62 to 100.0±0.00 for DCAN. Mean percentage adsorption efficiencies for simulation experiment is 16.670±0.467 to 41.67±1.103 for DCAN. Optimum conditions for DCAN were 0.8g adsorbent dosage, 60 minutes contact time, pH 9 and 0.012 mg/L initial concentration. Optimum values of theses parameters used for adsorption of DCAN in raw and chlorinated water serving the treatment plant gave an adsorption efficiency of 69.00±1.43% and 79.00±0.03 respectively. Adsorption efficiency of BCAC gave 94.4±0.42 and 98.00±1.41 for raw and chlorinated water respectively, with a total decrease in all physicochemical parameters examined after adsorption experiment. Adsorption isotherm studies indicated that Langmuir model was more suitable for the experimental data than Freundlich isotherm model. Conclusively, the effective adsorbent properties displayed by WSAC in the removal of DCAN indicate its potentials in treatment of water contaminations.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Aderonke Adetutu Okoya ◽  
Olasunkanmi Olalekan Olaiya ◽  
Abimbola Bankole Akinyele ◽  
Nnenneh Oruada Ochor

Trihalomethanes (THMs) are formed when excess chlorine during chlorination of water reacts with organic material in water. They have mutagenic and carcinogenic properties. Moringa oleifera (MO) has found wide acceptance by many people in Nigeria who have used it for food for both humans and fauna, for health purposes, and as a coagulant for water treatment. However, the seed husks are currently discarded as waste and they have not been used as adsorbent to remove THMs from water. The physicochemical properties of both the treated and raw surface water were determined using standard methods, and the concentration of THMs was determined from the water treatment plant at different stages of treatment using gas chromatography with flame ionization detector (GC-FID). Recovery experiments were carried out to validate the procedure. The efficiencies of activated carbon of Moringa oleifera seed husk (MOSH) adsorbent for the removal of THMs in the water and as a coagulant for water treatment were also assessed. Batch adsorption experiments were carried out, and different parameters such as pH (5, 7, and 9), adsorbent dosage (0.2, 0.4, and 0.8 g), contact time (30, 60, and 90 minutes), and initial concentration (0.2, 0.4, and 0.6 mg/l) were optimized for the removal of trichloromethane and tribromomethane using the MOSH activated carbon. Experimental adsorption data from different initial concentrations of trichloromethane and tribromomethane were used to test conformity with Langmuir and Freundlich adsorption isotherms. The percentage recovery from our procedures ranged from 96.0 ± 1.41 to 100.0 ± 0.00 for trichloromethane while for tribromomethane the range was 60 ± 2.82 to 100.0 ± 0.00. The mean percentage adsorption efficiencies for the simulation experiment ranged from 34.365 ± 1.41 to 93.135 ± 0.57 and from 41.870 ± 0.27 to 94.655 ± 0.41 for trichloromethane and tribromomethane, respectively. The optimum conditions for both trichloromethane and tribromomethane were pH 9, 0.8 g adsorbent dosage, 60-minute contact time, and 0.6 mg/l initial concentration. The optimum values of these parameters used for the adsorption of the two THMs in the surface water serving the treatment plant gave an efficiency of 100.00 ± 0.00%. The turbidity values for the coagulation experiment reduced from 9.76 ± 0.03 NTU in the raw water before coagulation to 5.92 ± 0.13 NTU after coagulation while all other physicochemical parameters of the surface water decreased in value except conductivity and total dissolved solid which increased from 104.5 ± 3.54 to 108.0 ± 2.83 μS/cm and 63.00 ± 11.31 to 83.0 ± 8.49 mg/l, respectively. The experimental data best fit into Langmuir than Freundlich adsorption isotherm. The study concluded that MOSH activated carbon could serve as an adsorbent for the removal of THMs, calcium, and sulphur from water samples.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3839
Author(s):  
Nandhini Sureshkumar ◽  
Samiha Bhat ◽  
Shwetha Srinivasan ◽  
Nirmala Gnanasundaram ◽  
Murugesan Thanapalan ◽  
...  

A liquid-solid circulating fluidized bed (LSCFB) helps to overcome the shortcomings of conventional fluidized beds by using a particle separation and return system as an integral part of the overall reactor configuration. Batch adsorption experiments were carried out for the removal of phenol from a synthetically prepared solution using fresh activated-carbon-coated glass beads. The morphological features and surface chemistry of the adsorbent were analyzed via SEM and FTIR techniques. The adsorbent dosage, contact time and temperature were varied along with solution pH to assess their effects on the adsorbent performance for phenol removal. Isotherm modeling showed that the phenol removal using the activated-carbon glass beads followed the Langmuir model. Effectively, it was observed at an adsorbent loading of 2.5 g/150 mL of feed volume and a contact time of 3 h produced an 80% efficiency in the batch study. Furthermore, on scaling it up to the column, the desired 98% phenol-removal efficiency was obtained with an adsorbent dosage of 250 g and contact time of 25 min. Adsorbent regeneration using 5% (v/v) ethanol showed a 64% desorption of phenol from the sorbent within 20 min in the LSCFB.


2020 ◽  
Vol 81 (6) ◽  
pp. 1191-1208 ◽  
Author(s):  
Nihan Kaya ◽  
Zeynep Yildiz Uzun

Abstract The increasing use of dyestuff in industrial applications brings with it environmental problems. These dyes, which are an eco-toxic hazard, are common water pollutants, even at very low concentrations in water resources. Therefore, they must be removed in an economical way. In this study, low-cost biosorbents such as pine cone char, walnut shell char, and hazelnut shell char were prepared by pyrolysis process at different carbonization temperatures in the range of 400–700 °C. Biochars with the highest surface area were used to remove alizarin yellow GG from aqueous solution and the adsorption capacities of these materials were compared to commercially available activated carbon. Biomasses and prepared biochars were characterized using Fourier transform infrared spectroscopy, thermogravimetric/differential thermogravimetry analysis, Brunauer–Emmett–Teller (BET), scanning electron microscopy/energy dispersive X-ray spectroscopy, partial and elemental analysis techniques. Operational parameters such as contact time, temperature, pH, adsorbent dosage, and initial dye concentration were considered as variables for the batch adsorption experiments. Among the biochars used, the highest adsorption efficiency (82%) was obtained in pine cone char (BET surface area 259.74 m2/g) at pH = 3, T = 45 °C, adsorbent dosage of 8 g/L, and initial dye concentration of 20 ppm. The adsorption mechanism has been investigated by applying different kinetic and isotherm models with the aid of time-dependent adsorption data. The adsorption process was best described by Langmuir isotherm and pseudo-second order kinetic model.


2014 ◽  
Vol 699 ◽  
pp. 141-145
Author(s):  
Marshahida Mat Yashim ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Noraini Razali ◽  
Mohd Shahrul Nizam Salleh ◽  
Wan Hasnidah Wan Osman

Activated carbon prepared from agro waste corn cob has been chemically treated with phosphoric acid at three different impregnation ratio by weight 0.5:1, 1.5:1 and 2.5:1. The prepared activated carbon has been utilized as the adsorbent for the removal of reactive dye, Remazol red 3BS dye from aqueous solution. Adsorption studies were carried out at four different initial dye concentration, contact time and adsorbent dosage. Equilibrium condition was attained within less than 2 hours and highest removal efficiency, 47%, was recorded for highest impregnation ratio activated carbon for initial dye concentration of 10 ppm. Higher adsorption efficiency can be achieved when the adsorbent dosage is gradually increased. The equilibrium adsorption studies shows that activated carbon impregnated at 2.5:1 impregnation ratio was very effective in adsorbing reactive dye from artificial textile effluent.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 112 ◽  
Author(s):  
Mohd Adib Mohammad Razi ◽  
Adel Al- Gheethi ◽  
Izzatul Ashikin ZA

Excessive release of textile wastewater with heavy metals into environment has posed a great problem to the natural water system. The efficiency of the adsorption process to remove heavy metals depend on the adsorbent. The commercial activated carbon is one of the most efficient adsorbent, but the limitation lies in the high cost. Therefore, the present study aimed to investigate the efficiency of sugarcane bagasse activated carbon modified by phosphoric acid as adsorbent for the removal of zinc (Zn) and Ferum (Fe) from the textile wastewater. The adsorption process was conducted using batch method as a function for pH (2-7), contact time (30 min to 24 h) and adsorbent dosage (0.6 to 6g). The final concentrations of the metal ions were determined by ICP-MS. The results revealed that the adsorption efficiency increased with the contact time, the optimum time was recorded after 2 h. The removal percentage of Zn and Fe associated with the adsorbent dosage due to the greater surface area with optimum value of 4.0 g. The increasing of pH from 2 to 6 correlated with high adsorption efficiency, with the optimum condition at pH 5. The maximum percentage removal of Fe, Zn was 80%. These findings indicated that the SBAC is an attractive alternative adsorbent material for the metal ions removal in textile wastewater.


2018 ◽  
Vol 44 ◽  
pp. 00089 ◽  
Author(s):  
Joanna Lach ◽  
Anna Szymonik ◽  
Agnieszka Ociepa-Kubicka

The possibility of using activated carbon for the removal of salicylic acid andiibuprofen sodium has been explored. These compounds are observed in crude and treated sewage and in surface water. The effect of pH on the adsorption efficiency was assessed. Tests were carried out from solutions with pH ranging from 2 to 10 (salicylic acid) and from 6 to 10 (iibuprofen sodium). It was found that the higher pH, the lower the adsorption of the compounds tested. Salicylic acid was most efficiently adsorbed from a solution with pH = 2, in which it occurred mainly in an undissociated form. The achieved efficiency of salicylic acid adsorption from solutions with pH=2 was 91%, while from those with pH=10, it was 55% (Co=4 mmol/L). The efficiency of removing ibuprofen sodium from the pH=6 solution was 64%, while from the pH = 10 solution, 60%.The adsorption of both salicylic acid and ibuprofen sodium follows the kinetics equation of the pseudo-2nd order. For the description of the adsorption isotherms, the Freundlich, Langmuir, Temkin and Dubibin-Radushkevich models were employed. The both compounds are described with the highest correlation coefficient in the case of the Freundlich equation.


2021 ◽  
Author(s):  
Abdulkareem AS ◽  
Hamzat WA ◽  
Tijani JO ◽  
Bankole MT ◽  
Titus Egbosiuba ◽  
...  

Abstract Comparative adsorption study of some toxic metals (Ni, Fe, Cu, Cd, and Pb) from battery industrial effluent by purified and polyethylene glycol-modified carbon nanotubes (CNTs) is reported. The as-prepared CNTs via chemical vapour deposition method (A-CNTs), its acid purified form (P-CNTs), and polyethylene glycol functionalized form (PEG-CNTs) were characterized by HRTEM, BET, HRSEM, FTIR and XRD. The HRSEM and HRTEM micrograph revealed the formation of multi-walled tubular network structures of different inner and outer diameter. The BET study of PEG-CNTs and purified CNTs showed surface areas of 970.81 m2/g and 781.88 m2/g, respectively. The nanomaterials batch adsorption effect of various parameters such as contact time, nano-adsorbent dosage and temperature was conducted. The optimum equilibrium to achieve maximum removal of Cd (83.41 %), Ni (92.79 %), Fe (95.93%), Pb (97.16 %) Cu (99.9 9%) using PEG-CNTs was 90 min of contact time, 0.3 g of nano-adsorbent dosage and 60 oC temperature. While the maximum percentage removal efficiencies accomplished using P-CNTs under the same applied conditions were Cd (78.64 %), Ni (76.12 %), Fe (92.87 %), Pb (90.7 2%) Cu (99.09 %). PEG-CNTs was seen as more effective than P-CNTs. Adsorption data of Ni on P-CNTs followed Langmuir isotherm while the adsorption equilibrium model (Freundlich isotherm) of Ni, Fe, Cu and Pb on PEG-CNTs were fitted well. However, in both cases, the sorption kinetic study followed the pseudo-second-order model. The thermodynamics showed that the removal of toxic metals from battery wastewater was spontaneous and endothermic irrespective of the nano-adsorbents. The study found that surface modification of CNTs by polyethylene glycol adequately improved the nanotubes, thus leading to relatively adsorption capacities of heavy metals from industrial battery effluent.


2015 ◽  
Vol 43 (3) ◽  
pp. 277-281 ◽  
Author(s):  
M Rahman ◽  
S Gul ◽  
M Ajmal ◽  
A Iqbal ◽  
Akk Achakzai

Removal of cadmium from aqueous solution was studied by using Quetta pine (Pinus halepensis Mill.) leaves. Batch adsorption experiments were performed as a function of appropriate equilibrium time, pH, concentration of adsorbate and amount of adsorbent. The optimum pH required for maximum adsorption was found to be 7.0 and the maximum contact time for the equilibrium was 30 minutes at adsorbent dose of 10 g. The maximum adsorption efficiency of cadmium removal was 98.50%. The results were better fitted by Langmuir than Freundlich isotherm. The separation factor of equilibrium 0.12 and 0.67 showed that Quetta pine leaves are good adsorbent of cadmium from aqueous solution DOI: http://dx.doi.org/10.3329/bjb.v43i3.21598 Bangladesh J. Bot. 43(3): 277-281, 2014 (December)


2014 ◽  
Vol 587-589 ◽  
pp. 616-619
Author(s):  
Zheng Wang ◽  
Dong Zhang ◽  
Ping Xia ◽  
Hui Ye ◽  
Wen Qi Zhou

The removal of geosmin by powered activated carbon (PAC) was studied at laboratory to select suitable PAC type and the removal efficiencies of geosmin by PAC in different application point as an emergency method were evaluated. The adsorption efficiency of coal-based PAC on geosmin was superior to that of bamboo-based PAC. The contact time and PAC dose were two important factors that affect the removal effect of geosmin. Geosmin could be controled below 10ng/L at 200ng/L of initial concentration.


2011 ◽  
Vol 8 (2) ◽  
pp. 803-808 ◽  
Author(s):  
U. V. Ladhe ◽  
S. K. Wankhede ◽  
V. T. Patil ◽  
P. R. Patil

Adsorptions of Erichrome Black T dye in aqueous solution on cotton stem activated carbon have been studied as a function of contact time, concentration and pH. Effect of various experimental parameters has been investigated at 39±1°C under batch adsorption technique. The result shows that cotton stem activated carbon adsorbs dye to a sufficient extent. The physicochemical characterization and chemical kinetics was also examined for the same dye. The overall result shows that it can be fruitfully used for the removal of dye from wastewaters.


Sign in / Sign up

Export Citation Format

Share Document