Application of Concept Design in Structural Design Software

2011 ◽  
Vol 71-78 ◽  
pp. 4230-4233
Author(s):  
Xue Feng Zhou ◽  
Xiang Chen

Concept design is the heart and soul of structural design. Combining with applications of PKPM series computer construction structural CAD system software, the paper described that software has some applicability, limitations, and approximate in practical construction applications. The structural design personnel should start from structural concept and par more attention to value of calculation parameters, computing model processing and calculation results determination, so as to ensure safety, economy and rationality of structural design.

2021 ◽  
Vol 11 (16) ◽  
pp. 7246
Author(s):  
Julius Moritz Berges ◽  
Georg Jacobs ◽  
Sebastian Stein ◽  
Jonathan Sprehe

Locally load-optimized fiber-based composites, the so-called tailored textiles (TT), offer the potential to reduce weight and cost compared to conventional fiber-reinforced plastics (FRP). However, the design of TT has a higher complexity compared to FRP. Current approaches, focusing on solving this complexity for multiple objectives (cost, weight, stiffness), require great effort and calculation time, which makes them unsuitable for serial applications. Therefore, in this paper, an approach for the efficient creation of simplified TT concept designs is presented. By combining simplified models for structural design and cost estimation, the most promising concepts, regarding the cost, weight, and stiffness of TT parts, can be identified. By performing a parameter study, the cost, weight, and stiffness optima of a sample part compared to a conventional FRP component can be determined. The cost and weight were reduced by 30% for the same stiffness. Applying this approach at an early stage of product development reduces the initial complexity of the subsequent detailed engineering design, e.g., by applying methods from the state of the art.


2011 ◽  
Vol 421 ◽  
pp. 276-280 ◽  
Author(s):  
Ge Ning Xu ◽  
Hu Jun Xin ◽  
Feng Yi Lu ◽  
Ming Liang Yang

To assess the roller coaster multi-body system security, it is need to extract the running process of kinematics, dynamics, load spectrum and other features, as basis dates of the roller coaster structural design. Based on Solidworks/motion software and in the 3D model, the calculation formula of the carrying car velocity and acceleration is derived, and the five risk points of the roller coaster track section are found by simulation in the running, and the simulation results of roller coaster axle mass center velocity are compared with theoretical calculation results, which error is less than 4.1%, indicating that the calculation and simulation have a good fit and providing the evidence for the roller coaster structure design analysis.


1993 ◽  
Vol 49 (5) ◽  
pp. 877-883 ◽  
Author(s):  
H. Adeli ◽  
J. Wilcoski

Author(s):  
Mohammed A. Azam ◽  
William P. Holmes

Abstract Research has been carried out at Coventry University Centre for Integrated Design on the concept design process and it is funded by the Coventry University Research Fund. An experiment, simulating product design in industry, was conducted by concept designers which were, in turn, acted by student industrial designers and student engineering designers. In general the product design process is a sequential process. The first part of the process is the conceptual phase. This is followed by the engineering design phases which include all the manufacturing information. In this case the downstream engineering design focuses on designs for manufacture and process selection. Information on the requirements of conceptual designers in these areas was collected from these experiments. The information is ultimately to be incorporated into rules in a knowledge base which can be readily accessed by the industrial designer during concept development via a CAD system.


2021 ◽  
Author(s):  
Shiiun Bak Wong ◽  
Nur Dalila Alias ◽  
Mohd Kamal Arif ◽  
Majid Shabazi

Abstract The rise of offshore marginal field development and low-cost CAPEX has given an impetus to O&G operators to challenge the common structural platform design especially for wellhead platform type. Demand to reduce the platform weight has been observed for the past 20 years. Typically, the challenge to meet this demand will be tremendous once the water depth exceed 50m. This paper will elaborate on how using an engineered design approach was implemented to obtain fast track onshore fabrication and offshore installation and meet the operator demand for minimal structural concept.


1990 ◽  
Vol 6 (02) ◽  
pp. 69-80
Author(s):  
H. S. Bong ◽  
William Hills ◽  
John B. Caldwell

The paper describes a method of incorporating knowledge and data of the production process into a concept design model in a way which provides a flexible and powerful structural design tool. Interactive graphics is shown to be a useful design aid when defining geometry and scantlings particularly when combined with a database of information on standardization, build methods and production technology. An effective method of assessing work content is presented in which man-hours are assessed for each phase in the construction process, that is, preparation, fabrication and erection. The total build cost, including labor, material and overhead, is used as the criterion in a series of studies which demonstrate the application of the method to concept design and which show the sensitivity of total cost to changes in various parameters of design and production.


2012 ◽  
Vol 182-183 ◽  
pp. 778-782
Author(s):  
Yun Bing Yang ◽  
Yong Gang Lu ◽  
Yan Zhou

Based on integration design method for semi-armor-piercing warhead, the design and implementation of CAD system are illuminated. The whole frame of CAD system is established. The function of integration design system is analyzed by IDEF0 method, and the functional modules are established. System software structure is founded based on system functional characteristic. Based on the technique of database and visualization, the key techniques of system implementation are analyzed in detail, which include database, visualization, etc. Finally, an application example of CAD system is given.


2012 ◽  
Vol 466-467 ◽  
pp. 951-955
Author(s):  
Jun Qing Zhan ◽  
Xiao Mei Feng ◽  
Li Shun Li ◽  
Xiang De Meng

The self-loading device used for side-crane is put forward. Its structure is presented. Based on the force analysis when the side-crane works at flat ground, the mathematical model is established when the crane working at uneven ground. And the design calculation is performed. The self-loading device’s optimal design is accomplished. Based on the above calculation results, the self-loading prototype is manufactured. And the design method can be adopted to the similar equipment’s structural design.


Author(s):  
V. V. Zhadnov ◽  
A. N. Zotov

This article discusses problems of importing data from system of CAD (Computer-Aided Design) to dependability prediction software. Characteristics of dependability of electronic modules to a large extent define reliability of electronic equipment which contains them. Dependability of electronic modules is established on the early stages of engineering and is usually calculated by special software. Obviously, the dependability prediction result accuracy will depend on the quality and fullness of input data. Thus, the purpose of this study is to improve the accuracy of dependability prediction of electronic modules calculation results in dependability prediction software by automating the process of inputting data about electrical components and PCB’s (Printed Circuit Board) from CAD-system. The object of the study is typical information about electronic modules which is needed to calculate dependability on early stages of engineering with taking into account the probabilistic characteristics of the life components of its electronic components. The subject of the study are methods, models and algorithms applicable to the transferring data from CAD-system to dependability prediction software. Based on results of analysis of existing data transferring methods between software packages from different vendors, usage of Excel tables and customizable templates was justified. Practical implementation of this method was developed for Altium Designer and ASONIKA-K-SCh dependability prediction software package. An import program was developed which allowed to transfer data from Altium Designer to ASONIKA-K-SCh using Excel tables and customizable templates. The import program as integrated into ASONIKA-K-SCh software. Practical usage showed that it allowed not only to reduce laboriousness of PCB’s and electronical components’ data inputting, but also to reduce a great amount of possible mistakes.


2011 ◽  
Vol 130-134 ◽  
pp. 719-724
Author(s):  
Dong Nan Li ◽  
Jing Yu Wu ◽  
Cun En Chen

There're two issues should be concerned about during the optimization design of structural concept. The one is The using performance of structure, the another is the cost of foundation should be contained in the cost of whole structure. And it is suggested that The cost performance in value engineering should be used during the optimization design of structural concept. In this paper, the method and the process of the optimum structural design is expounded by optimizing a structural concept of project.


Sign in / Sign up

Export Citation Format

Share Document