scholarly journals A Review Paper on Simulation and Modeling of Combustion Characteristics under High Ambient and High Injection of Biodiesel Combustion

2015 ◽  
Vol 773-774 ◽  
pp. 580-584
Author(s):  
Adiba Rhaodah Andsaler ◽  
Amir Khalid ◽  
Him Ramsy ◽  
Norrizam Jaat

This paper describes simulation of combustion characteristics under high ambient and high injection of biodiesel combustion by using CFD simulation. Diesel engine performance and emissions is strongly couple with fuel atomization and spray processes, which in turn are strongly influenced by injector flow dynamics. The principal objective of this research is to seek the effect of temperature and pressure on the spray characteristics, as well as fuel-air mixing characteristics. Experiments were performed in a constant volume chamber at specified ambient gas temperature and pressure. This research was continued with injecting diesel fuel into the chamber using a Bosch common rail system. Direct photography technique with a digital camera was used to clarify the real images of spray pattern, liquid length and vapor penetration. The method of the simulation of real phenomenon of diesel combustion with optical access rapid compression machine is also reviewed and experimental results are presented. The liquid phase of the spray reaches a maximum penetration distance soon after the start of injection, while the vapor phase of the spray continues to penetrate downstream. The condition to which the fuel is affected was estimated by combining information on the block temperature, ambient temperature and photographs of the spray. The increases in ambient pressure inside the chamber resulting in gain of spray area and wider spray angle. Thus predominantly promotes for a better fuel-air mixing. All of the experiments will be conducted and run by using CFD. The simulation will show in the form of images.

2015 ◽  
Vol 773-774 ◽  
pp. 501-505 ◽  
Author(s):  
Mohamad Jaat ◽  
Amir Khalid ◽  
Azwan Sapit ◽  
Siti Mariam Basharie ◽  
Adiba Rhaodah Andsaler ◽  
...  

s: Diesel fuel injection is the most dominant in ignition process of the diesel engines combustion. Diesel engines have been widely used in heavy-duty and light-duty vehicles due to their higher fuel economy, efficient and powerful than spark ignition (SI) engines. The principal objective of this research is to seek the effect of temperature and pressure on the spray characteristics, as well as fuel-air mixing characteristics. Experiments were performed in a constant volume chamber at specified ambient gas temperature and pressure. This research was continued with injecting diesel fuel into the chamber using a Bosch common rail system. Direct photography technique with a digital camera was used to clarify the real images of mixture formation such as spray penetration, fuel evaporation and spray interference. The liquid phase of the spray reaches a maximum penetration distance soon after the start of injection, while the vapour phase of the spray continues to penetrate downstream. The condition to which the fuel is affected was estimated by combining information on the wall chamber temperature, ambient temperature and photographs of the spray. The increases in ambient pressure inside the chamber resulting in gain of spray area and wider spray angle. Thus predominantly promotes for a better fuel-air premixing.


1993 ◽  
Vol 115 (3) ◽  
pp. 699-706 ◽  
Author(s):  
J. P. Hartfield ◽  
P. V. Farrell

Evaporation of single, liquid droplets in a high-temperature, high-pressure gaseous environment has been investigated experimentally. The effects of gas temperature, pressure, and strength of naturally occurring convective flows were studied. Pure hydrocarbon (n-heptane) and trichlorotrifluoroethane (R-113) droplets were vaporized in a nitrogen atmosphere within a sealed chamber, which was developed to minimize forced convection. Experiments were carried out in normal and microgravity (~ 10−5 g) fields in order to examine the effect of natural convection. A single droplet was attached to the end of a quartz fiber. The gas temperature and pressure were raised quickly by a compressive process. The gas temperature and pressure were varied from 0.93<Tr<1.23 and 0.32<Pr<0.73. The droplet was located at the point of compressive symmetry. Droplet lifetime and instantaneous vaporization rate were determined from the data recorded by video camera. The results indicated that ambient gas temperature is a more significant parameter than ambient pressure for high-pressure droplet vaporization. This conclusion was based on comparisons of droplet vaporization rate for the range of temperatures and pressure tested. Ambient gas pressure was seen to have a weaker influence on vaporization rate. Removal of the gravity field during free-fall experiments resulted in an increase of droplet life time of about 30 percent for the case of R-113 liquid, and little change for the n-heptane droplets.


1993 ◽  
Vol 115 (4) ◽  
pp. 777-780 ◽  
Author(s):  
Gong Yunyi ◽  
Liang Xuanming

An investigation of the effect of ambient gas temperature and density on diesel fuel spray penetration, spray angle, and wall impingement at an injection pressure of 75–134 MPa was conducted in a constant-volume bomb with a reconstructed Cummins PT fuel system by using a high-speed photographic technique. The results show that penetration does not increase monotonically with injection pressure, and ambient temperature has more effect on a high-pressure spray than on those with conventional pressures. With the high temperature, the penetration of a high injection pressure spray is reduced a bit, while the spray angle increases obviously. When the high-pressure spray impinges on a wall at ordinary temperature, the rebounding droplets can hardly be seen, but at higher wall temperature, a cloud of dense spray will be observed near the wall, and sometimes a vapor layer will be formed between the spray and the wall. Based on experimental results, an empirical formula considering the effects of both the ambient temperature and injection pressure is presented.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Hamza Bousbaa ◽  
Awad Sary ◽  
Mohand Tazerout ◽  
Abdelkrim Liazid

Abstract Biofuels are a promising alternative to petroleum-based fuels. This paper investigates the performance, combustion, and exhaust emissions of a single cylinder diesel engine operated on baseline diesel and biofuel produced by vegetable oil and processing animal fat. The vegetable oil is called PODL20, which is a blend of palm oil and D-Limonen in proportion of 80% and 20%, respectively. The second biofuel is synthesized from the animal fat wastes (WAF) after transesterification process. Both experimental and numerical investigations are achieved in this work. The experiments are conducted at constant engine speed mode (1800 rpm) with applied loads on a wide domain. The CFD code converge is used to simulate the in-cylinder combustion for all the tested fuels. Comparative measures of brake thermal efficiency, break specific fuel consumption (bsfc), exhaust gas temperature, volumetric efficiency, and pollution (THC, CO2, CO, NO, NOx) are presented and discussed. Also, a step is achieved with in-cylinder CFD simulation of biofuel combustion. The obtained results indicate that the combustion characteristics are slightly changed when comparing neat diesel to biofuels. Some of the results obtained in this work indicate that WAF fuel decreases the total unburned fuel as well as the nitrogen oxides (NOx) emissions. The numerical results are in logic agreement with those obtained experimentally, which promotes more detailed investigations and combustion characteristics optimization in forthcoming works.


Author(s):  
Qize He ◽  
Ofodike A. Ezekoye ◽  
Beth Tubbs ◽  
Carl Baldassarra

Smoke spread through the elevator shafts of high rise buildings has been numerically investigated using the Fire Dynamics Simulator (FDS), which is a computational fluid dynamics (CFD) program suitable for fire induced heat and mass transfer. A model of a high rise building was developed and a fire was set at the first level. The smoke spread process through the elevator shafts was evaluated. The process can be divided into two phases. In the first phase, the smoke gradually fills the shafts, and the gas temperature and pressure in the shafts are transient. After this phase, the smoke fully fills the shafts, the temperature and pressure in the shaft are almost steady, which suggests that the smoke inflow rate equals the outflow rate. Throughout the process, the spatial distributions of temperature and pressure in the elevator shaft under fire situations were reported. The hot fire product gases entering the shaft causes a stack effect, which transports smoke to the upper levels. A method of partially enclosing the elevator lobbies was also investigated by the CFD simulation. The results were compared with the unenclosed situation, and showed that enclosing lobbies not only increases the time needed for the smoke to fully fill the shafts, but also reduces the temperature and pressure differences in the shafts.


2020 ◽  
Vol 117 ◽  
pp. 107965
Author(s):  
M.Yu. Petrushina ◽  
E.S. Dedova ◽  
K.V. Yusenko ◽  
A.S. Portnyagin ◽  
E.K. Papynov ◽  
...  

2014 ◽  
Vol 70 (7) ◽  
pp. 1285-1291 ◽  
Author(s):  
Jia-jia Deng ◽  
Liang-ming Pan ◽  
De-qi Chen ◽  
Yu-quan Dong ◽  
Cheng-mu Wang ◽  
...  

Aimed at cost saving and pollution reduction, a novel desulfurization wastewater evaporation treatment system (DWETS) for handling wet flue gas desulfurization (WFGD) wastewater of a coal-fired power plant was studied. The system's advantages include simple process, and less investment and space. The feasibility of this system has been proven and the appropriate position and number of nozzles, the spray droplet size and flue gas temperature limitation have been obtained by computational fluid dynamics (CFD) simulation. The simulation results show that a longer duct, smaller diameter and higher flue gas temperature could help to increase the evaporation rate. The optimal DWETS design of Shangdu plant is 100 μm droplet sprayed by two nozzles located at the long duct when the flue gas temperature is 130 °C. Field tests were carried out based on the simulation results. The effects of running DWETS on the downstream devices have been studied. The results show that DWETS has a positive impact on ash removal efficiency and does not have any negative impact on the electrostatic precipitator (ESP), flue gas heat exchanger and WFGD. The pH values of the slurry of WFGD slightly increase when the DWETS is running. The simulation and field test of the DWETS show that it is a feasible future technology for desulfurization wastewater treatment.


1952 ◽  
Vol 44 (1) ◽  
pp. 211-212 ◽  
Author(s):  
E. J. Bradbury ◽  
Dorothy McNulty ◽  
R. I. Savage ◽  
E. E. McSweeney

1992 ◽  
Vol 276 ◽  
Author(s):  
D-G. Oei ◽  
S. L. McCarthy

ABSTRACTMeasurements of the residual stress in polysilicon films made by Low Pressure Chemical Vapor Deposition (LPCVD) at different deposition pressures and temperatures are reported. The stress behavior of phosphorus (P)-ion implanted/annealed polysilicon films is also reported. Within the temperature range of deposition, 580 °C to 650 °C, the stress vs deposition temperature plot exhibits a transition region in which the stress of the film changes from highly compressive to highly tensile and back to highly compressive as the deposition temperature increases. This behavior was observed in films that were made by the LPCVD process at reduced pressures of 210 and 320 mTORR. At deposition temperatures below 590 °C the deposit is predominantly amorphous, and the film is highly compressive; at temperatures above 610 °C (110) oriented polycrystalline silicon is formed exhibiting high compressive residual stress.


Nanoscale ◽  
2015 ◽  
Vol 7 (19) ◽  
pp. 8803-8810 ◽  
Author(s):  
Ya. Grosu ◽  
G. Renaudin ◽  
V. Eroshenko ◽  
J.-M. Nedelec ◽  
J.-P. E. Grolier

Sign in / Sign up

Export Citation Format

Share Document