Research on Optimum Processing Parameter of EDM Based on Support Vector Machine

2015 ◽  
Vol 775 ◽  
pp. 229-233
Author(s):  
Hao Jiang ◽  
Yuan Lin ◽  
Shuo Wang ◽  
Xiu Wu Sui

The processing mechanism of electrical discharge machining (EDM) is complex and there are many factors affecting it, therefore the process parameter is very important for processing quality. This paper analyses the relationship between electric parameter and processing quality, then uses support vector machine (SVM) to predict the optimum electric parameter. The simulation result shows that the highest prediction accuracy is 96.10%, the lowest is 89.20%, average accuracy is 94.28%, indicating that the algorithm stability and generalization ability are outstanding. Further verified by experiment, the highest prediction accuracy can amount to 92.65%, the lowest is 81.5%, average accuracy is 89.38%, and electric parameter optimized by SVM can guarantee the expected processing effect better. The exploration in EDM intelligent machining will be convenient for operators to determine the most effective machining conditions.

2013 ◽  
Vol 295-298 ◽  
pp. 644-647 ◽  
Author(s):  
Yu Kai Yao ◽  
Hong Mei Cui ◽  
Ming Wei Len ◽  
Xiao Yun Chen

SVM (Support Vector Machine) is a powerful data mining algorithm, and is mainly used to finish classification or regression tasks. In this literature, SVM is used to conduct disease prediction. We focus on integrating with stratified sample and grid search technology to improve the classification accuracy of SVM, thus, we propose an improved algorithm named SGSVM: Stratified sample and Grid search based SVM. To testify the performance of SGSVM, heart-disease data from UCI are used in our experiment, and the results show SGSVM has obvious improvement in classification accuracy, and this is very valuable especially in disease prediction.


2021 ◽  
pp. 0309524X2110568
Author(s):  
Lian Lian ◽  
Kan He

The accuracy of wind power prediction directly affects the operation cost of power grid and is the result of power grid supply and demand balance. Therefore, how to improve the prediction accuracy of wind power is very important. In order to improve the prediction accuracy of wind power, a prediction model based on wavelet denoising and improved slime mold algorithm optimized support vector machine is proposed. The wavelet denoising algorithm is used to denoise the wind power data, and then the support vector machine is used as the prediction model. Because the prediction results of support vector machine are greatly affected by model parameters, an improved slime mold optimization algorithm with random inertia weight mechanism is used to determine the best penalty factor and kernel function parameters in support vector machine model. The effectiveness of the proposed prediction model is verified by using two groups actually collected wind power data. Seven prediction models are selected as the comparison model. Through the comparison between the predicted value and the actual value, the prediction error and its histogram distribution, the performance indicators, the Pearson’s correlation coefficient, the DM test, box-plot distribution, the results show that the proposed prediction model has high prediction accuracy.


2011 ◽  
Vol 109 ◽  
pp. 636-640
Author(s):  
Bo Tang ◽  
Min Xia

With China's rapid economic development, credit scoring has become very important. This paper presents a new fuzzy support vector machine algorithm used to solve the problems of credit scoring. The empirical results show that the proposed fuzzy membership model is valid ,the algorithm has good prediction accuracy and anti-noise ability.


2018 ◽  
Vol 29 (9) ◽  
pp. 2027-2039 ◽  
Author(s):  
Zhangjie Chen ◽  
Ya Wang

This article presents an infrared–ultrasonic sensor fusion approach for support vector machine–based fall detection, often required by elderly healthcare. Its detection algorithms and performance evaluation are detailed. The location, size, and temperature profile of the user can be estimated based on a novel sensory fusion algorithm. Different feature sets of the support vector machine–based machine learning algorithm are analyzed and their impact on fall detection accuracy is evaluated and compared empirically. Experiments study three non-fall activities, standing, sitting, and stooping, and two fall actions, forward falling and sideway falling, to simulate daily activities of the elderly. Fall detection accuracy studies are performed based on discretely and continuously (closer to reality) recorded experimental data, respectively. For the discrete data recording, an average accuracy of 92.2% is achieved when the stand-alone Grid-EYE is used and the accuracy is increased to 96.7% when sensor fusion is used. For the continuous data recording (180 training sets, 60 test sets at each distance), an average accuracy less than 70.0% is achieved when the stand-alone Grid-EYE is used and the accuracy is increased to around 90.3% after sensor fusion. New features will be explored in the next step to further increase detection accuracy.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5152
Author(s):  
Conor McKinnon ◽  
James Carroll ◽  
Alasdair McDonald ◽  
Sofia Koukoura ◽  
David Infield ◽  
...  

Anomaly detection for wind turbine condition monitoring is an active area of research within the wind energy operations and maintenance (O & M) community. In this paper three models were compared for multi-megawatt operational wind turbine SCADA data. The models used for comparison were One-Class Support Vector Machine (OCSVM), Isolation Forest (IF), and Elliptical Envelope (EE). Each of these were compared for the same fault, and tested under various different data configurations. IF and EE have not previously been used for fault detection for wind turbines, and OCSVM has not been used for SCADA data. This paper presents a novel method of condition monitoring that only requires two months of data per turbine. These months were separated by a year, the first being healthy and the second unhealthy. The number of anomalies is compared, with a greater number in the unhealthy month being considered correct. It was found that for accuracy IF and OCSVM had similar performances in both training regimes presented. OCSVM performed better for generic training, and IF performed better for specific training. Overall, IF and OCSVM had an average accuracy of 82% for all configurations considered, compared to 77% for EE.


2014 ◽  
Vol 1061-1062 ◽  
pp. 935-938
Author(s):  
Xin You Wang ◽  
Guo Fei Gao ◽  
Zhan Qu ◽  
Hai Feng Pu

The predictions of chaotic time series by applying the least squares support vector machine (LS-SVM), with comparison with the traditional-SVM and-SVM, were specified. The results show that, compared with the traditional SVM, the prediction accuracy of LS-SVM is better than the traditional SVM and more suitable for time series online prediction.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jiamei Chen ◽  
Lin Ma ◽  
Yubin Xu

To improve the intelligence of the mobile-aware applications in the heterogeneous wireless networks (HetNets), it is essential to establish an advanced mechanism to anticipate the change of the user location in every subnet for HetNets. This paper proposes a multiclass support vector machine based mobility prediction (Multi-SVMMP) scheme to estimate the future location of mobile users according to the movement history information of each user in HetNets. In the location prediction process, the regular and random user movement patterns are treated differently, which can reflect the user movements more realistically than the existing movement models in HetNets. And different forms of multiclass support vector machines are embedded in the two mobility patterns according to the different characteristics of the two mobility patterns. Moreover, the introduction of target region (TR) cuts down the energy consumption efficiently without impacting the prediction accuracy. As reported in the simulations, our Multi-SVMMP can overcome the difficulties found in the traditional methods and obtain a higher prediction accuracy and user adaptability while reducing the cost of prediction resources.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hyungsik Shin ◽  
Jeongyeup Paek

Automatic task classification is a core part of personal assistant systems that are widely used in mobile devices such as smartphones and tablets. Even though many industry leaders are providing their own personal assistant services, their proprietary internals and implementations are not well known to the public. In this work, we show through real implementation and evaluation that automatic task classification can be implemented for mobile devices by using the support vector machine algorithm and crowdsourcing. To train our task classifier, we collected our training data set via crowdsourcing using the Amazon Mechanical Turk platform. Our classifier can classify a short English sentence into one of the thirty-two predefined tasks that are frequently requested while using personal mobile devices. Evaluation results show high prediction accuracy of our classifier ranging from 82% to 99%. By using large amount of crowdsourced data, we also illustrate the relationship between training data size and the prediction accuracy of our task classifier.


2011 ◽  
Vol 3 ◽  
pp. BECB.S7503 ◽  
Author(s):  
Sangeetha Subramaniam ◽  
Monica Mehrotra ◽  
Dinesh Gupta

There is an urgent need to develop novel anti-malarials in view of the increasing disease burden and growing resistance of the currently used drugs against the malarial parasites. Proliferation inhibitors targeting P. falciparum intraerythrocytic cycle are one of the important classes of compounds being explored for its potential to be novel antimalarials. Support Vector Machine (SVM) based model developed by us can facilitate rapid screening of large and diverse chemical libraries by reducing false hits and prioritising compounds before setting up expensive High Throughput Screening experiment. The SVM model, trained with molecular descriptors of proliferation inhibitors and non-inhibitors, displayed a satisfactory performance on cross validations and independent data set, with an average accuracy of 83% and AUC of 0.88. Intriguingly, the method displayed remarkable accuracy for the recently submitted P. falciparum whole cell screening datasets. The method also predicted several inhibitors in the National Cancer Institute diversity set, mostly similar to the known inhibitors.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Liu ◽  
Wenxiang Gu ◽  
Wenyi Zhang ◽  
Jianan Wang

Glycation is a nonenzymatic process in which proteins react with reducing sugar molecules. The identification of glycation sites in protein may provide guidelines to understand the biological function of protein glycation. In this study, we developed a computational method to predict protein glycation sites by using the support vector machine classifier. The experimental results showed that the prediction accuracy was 85.51% and an overall MCC was 0.70. Feature analysis indicated that the composition ofk-spaced amino acid pairs feature contributed the most for glycation sites prediction.


Sign in / Sign up

Export Citation Format

Share Document