An Investigation of the Thermal Sprayed Molybdenum Coatings Behaviour to Micro-Abrasion Wear

2016 ◽  
Vol 841 ◽  
pp. 15-20
Author(s):  
Gheorghe Matache ◽  
Alexandru Paraschiv ◽  
Cristian Puscasu

The wear behaviour of thick molybdenum coatings deposited by electric arc thermal spray on steel support was investigated by micro-abrasion, a relatively recent introduced method for small scale wear testing. The wear mechanisms and wear rates without coatings penetration were investigated with respect of time corresponding to primary and secondary wear stages. The micro-abrasion of Mo coatings using SiC abrasive slurry have been discussed and wear scar characteristics were evaluated based on the experimentally results. The worn surfaces of the tested specimen were examined by SEM and the specific wear rate was calculated from experimental data. For the testing durations used it was identified the change from grooving to rolling wear corresponding to the transition of wear mode from two-body to three body-abrasion.

1995 ◽  
Vol 18 (12) ◽  
pp. 777-785 ◽  
Author(s):  
E. Vitale ◽  
P. Giusti

Si-alloyed pyrolitic carbon (PyC) is currently employed in many biomedical devices, due to its fairly good biological compatibility and non biodegradeability. For prosthetic heart valve applications, required to operate safely for many years, the resistance to abrasive wear is one of the limiting factors which must be accurately evaluated. The present study reports on abrasive wear testing of Ti/PyC and PyC/PyC sliding couples. For both couples it was found that the wear behaviour can be shifted from a low wear regime, characterised by very small wear rates and reduced scatter, to a high wear regime, characterised by high wear rates and high scatter, due to the presence of particle contamination coming from the environment and/or from the specimen polishing process. Actual biomedical devices, particularly heart valves, should not experience the high wear regime, due to the absence of any hard particle contamination source. The wear observed in these items is in fact minimal and may depend on mechanisms other than abrasive wear. In these conditions the experimental evaluation of the wear behaviour should definetely be performed by tests on actual devices.


Lubricants ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 53
Author(s):  
Spencer Fullam ◽  
Jade He ◽  
Caroline S. Scholl ◽  
Thomas M. Schmid ◽  
Markus A. Wimmer

Total Joint Replacement (TJR) devices undergo standardized wear testing in mechanical simulators while submerged in a proteinaceous testing solution to mimic the environmental conditions of artificial joints in the human body. Typically, bovine calf serum is used to provide the required protein content. However, due to lot-to-lot variability, an undesirable variance in testing outcome is observed. Based on an earlier finding that yellowish-orange serum color saturation is associated with wear rate, we examined potential sources of this variability, by running a comparative wear test with bilirubin; hemin; and a fatty acid, oleic acid, in the lubricant. All these compounds readily bind to albumin, the most abundant protein in bovine serum. Ultrahigh molecular weight polyethylene (UHMWPE) pins were articulated against CoCrMo discs in a pin-on-disc tribometer, and the UHMWPE wear rates were compared between lubricants. We found that the addition of bilirubin increased wear by 121%, while hemin had a much weaker, insignificant effect. When added at the same molar ratio as bilirubin, the fatty acid tended to reduce wear. Additionally, there was a significant interaction with respect to bilirubin and hemin in that UHMWPE wear rate decreased with increasing fatty acid concentration. We believe the conformational change in albumin by binding bilirubin makes it more likely to form molecular bridges between UHMWPE and the metal counterface, thus increasing adhesive wear. However, fatty acids compete for binding sites on albumin, and can prevent this conformational change. Hence, the protein is stabilized, and the chance for albumin to form bridges is lowered. Ultimately, UHMWPE wear rate is driven by the competitive binding of bilirubin and fatty acid to albumin.


Author(s):  
G Girish ◽  
V Anandakrishnan

In this work, the dry sliding wear behaviour of recursively friction stir processed AA7075 was investigated using a pin-on-disc wear testing apparatus. The microstructure of the processed specimen was probed using optical microscopy, transmission electron microscopy and atomic force microscopy. Experiments were conducted using Taguchi experimental design by varying three different parameters like load, sliding velocity and sliding distance, and the analysis of variance was performed to identify the influence of the parameters over the wear rate. From the main effect plot, the combination of 9.81 N of load, 2 m/s of sliding velocity and a sliding distance of 2000 m was identified as the optimum levels that minimize the wear rate. The regression model was developed to calculate the wear rate, and the validation test was performed with the optimum parameter combination and compared with the experimental results. Wear tracks were examined using field-emission scanning electron microscopy to identify the type of wear mechanism.


2006 ◽  
Vol 304-305 ◽  
pp. 403-407 ◽  
Author(s):  
Bing Hai Lv ◽  
Ju Long Yuan ◽  
Ying Xue Yao ◽  
Z.W. Wang ◽  
B.C. Tao ◽  
...  

To understand the mechanism involved in the lapping process of the silicon nitride balls, the wear mode is investigated in this paper. The abrasion tests were performed on a ball-plate wear test apparatus with different loads (0~2N/ball) and slurry concentrations (5%wt~30%wt W20 B4C3). The abraded surface is observed by optical telescope. A wear-mode map, which defines the regimes for two-body abrasion or three-body abrasion dominating in the micro-scale abrasion test, is plotted with two axes: load and concentration of abrasive. An empirical formula for the wear mode transition is adopted to calculate the transition point S*, which can then used to predict the wear mode in lapping process of silicon nitride ball.


2017 ◽  
Vol 52 (17) ◽  
pp. 2281-2288 ◽  
Author(s):  
S Sivakumar ◽  
S Senthil Kumaran ◽  
M Uthayakumar ◽  
A Daniel Das

The dry sliding wear behaviour of LM 24 aluminum alloy composites reinforced with garnet particles was evaluated. Stir casting technique was used to fabricate the composites. A pin-on-disc wear-testing machine was used to evaluate the wear rate, in which an EN 24 steel disc was used as the counterface. Results indicated that the wear rates of the composites were lower than that of the matrix alloy and further decreased with the increase in garnet content. However, in both unreinforced and reinforced composites, the wear rate increased with the increase in load and the sliding speed. Increase in the applied load increased the wear severity by changing the wear mechanism from abrasion to particle cracking-induced delamination wear. It was found that with the increase in garnet content, the wear resistance increased monotonically. The observations have been explained using scanning electron microscopy analysis of the worn surfaces and the subsurface of the composites. In this work, the most influencing input and output parameters have been performed and the process parameters have been prioritized using genetic algorithm. Genetic algorithm is used to optimize the most influencing input as well as output process parameters. The practical significance of applying genetic algorithm to dry sliding wear behavior process has been validated by means of computing the deviation between predicted and experimentally obtained wear behavior of metal matrix composite.


Author(s):  
S L Smith ◽  
D Dowson ◽  
A A J Goldsmith

It has been found that a remarkable reduction in the wear of metal-on-metal hip joints can be achieved by simply increasing the diameter of the joint. A tribological evaluation of metal-on-metal joints of 16, 22,225, 28 and 36 mm diameter was conducted in 25 per cent bovine serum using a hip joint simulator. The joints were subject to dynamic motion and loading cycles simulating walking for both lubrication and wear studies. For each size of joint in the lubrication study, an electrical resistivity technique was used to detect the extent of surface separation through a complete walking cycle. Wear of each size of joint was measured gravimetrically in wear tests of at least 2 × 106 cycles duration. Joints of 16 and 22.225mm diameter showed no surface separation in the lubrication study. This suggested that wear would be proportional to the sliding distance and hence joint size in this boundary lubrication regime. A 28 mm diameter joint showed only limited evidence of surface separation suggesting that these joints were operating in a mixed lubrication regime. A 36 mm diameter joint showed surface separation for considerable parts of each walking cycle and hence evidence of the formation of a protective lubricating film. Wear testing of 16 and 22.225mm diameter metal-on-metal joints gave mean wear rates of 4.85 and 6.30mm3/106 cycles respectively. The ratio of these wear rates, 0.77, is approximately the same as the joint diameters ratio, 16/22.225 or 0.72, as expected from simple wear theory for dry or boundary lubrication conditions. No bedding-in was observed with these smaller diameter joints. For the 28 mm diameter joint, from 0 to 2 × 106 cycles, the mean wear rate was 1.62 mm3/106 cycles as the joints bedded-in. Following bedding-in, from 2.0 × 106 to 4.7 × 106 cycles, the wear rate was 0.54mm3/106 cycles. As reported previously by Goldsmith in 2000 [1], the mean steady state wear rate of the 36 mm diameter joints was lower than those of all the other diameters at 0.07 mm3/106 cycles. For a range of joints of various diameters, subjected to identical test conditions, mean wear rates differed by almost two orders of magnitude. This study has demonstrated that the application of sound tribological principles to prosthetic design can reduce the wear of metal-on-metal joints, using currently available materials, to a negligible level.


Author(s):  
S C Sharma ◽  
M Krishna ◽  
P S Vizhian ◽  
A Shashishankar

The unlubricated sliding high temperature wear behaviour of A17075 alloy composites reinforced with short E-glass fibre was evaluated. A17075-glass composites were prepared by the liquid metallurgical technique with 2, 4 and 6 per cent by weight. A high temperature sliding wear apparatus, with temperature range 30-200°C, was used to evaluate the wear rate. Results indicated that addition of short glass fibre to A17075 alloy not only delays the transition wear (transition between mild and severe wear) but also reduces the wear rate. However, in both unreinforced alloy and reinforced composites, the wear rates increased with increases in the load, operating temperature and sliding speed. Increase in the applied load and operating temperature increased the wear severity by changing the wear mechanism from adhesion wear to debris cracking induced delamination wear. The observations have been explained using scanning electron microscopy, X-ray diffraction and energy-dispersive spectroscopy analysis of the worn surfaces and the debris.


2011 ◽  
Vol 325 ◽  
pp. 339-344 ◽  
Author(s):  
Jim N. Boland ◽  
Xing S. Li ◽  
D. Hay ◽  
Colin M. MacRae ◽  
S. Elbracht ◽  
...  

Variability in the abrasive wear of PCD coatings on cemented WC substrates has been investigated. Six samples of PCD coated carbides were tested in a wear testing rig. The PCD coated element was used to turn an industry standard vitrified bonded corundum grinding wheel. The wear rate was measured as the weight loss of the cutting element per cubic metre of grinding wheel machined during the test. Two grades of cutting elements were observed. One grade had wear rates between 6 and 7.3 g/m³ but of the three poor quality samples, only one valid test was made realising wear rate of ~7,800 g/m³. The microstructures of the samples were studied using SEM, X-ray imaging, neutron diffraction and XRD. SEM images revealed differences in the volume percentage of diamonds in the two grades and the XRD scans highlighted the variable distribution of the diamond phase in the coating. Estimates of the residual stresses in a good and poor quality samples indicated significantly higher compressive stresses in the good quality versus poor quality coating. These results have revealed two extremes in the wear rates of these PCD coated carbides. It is suggested that the difference in diamond content between the two grades is not sufficient to account for the 3 orders-of-magnitude difference in the observed wear rates. However, the presence of intrusive veins of carbide material in the coatings, especially around the curved cutting tip, suggested that the macroscopic defects observed in the x-ray and SEM images were the major cause of the high wear rates in the poor quality sample.


1999 ◽  
Author(s):  
Jeff A. Sprague ◽  
Willard L. Sauer

Abstract The effect of adding a second axis of motion was investigated for pin-on-disk wear testing of ultra-high-molecular-weight polyethylene (UHMWPE) for orthopaedic implant applications. In addition to linear reciprocation of the UHMWPE or metal disk, axial rotation of the metal or UHMWPE pin was conducted. The added rotation reproduces the cross-shear on the UHMWPE surface that is generated in clinically relevant wear simulator tests and in vivo. The wear rates that result from the multi-axis pin-on-disk tests are significantly higher (one to two orders of magnitude) than those seen in the linear-only tests. This supports the findings of other researchers (Bragdon et al., 1996; McKellop, 1995; Walker et al., 1996; Wang et al. 1997) in that the application of nonlinear motion increases the wear of UHMWPE substantially. This is further validated by the comparison of a hip simulator wear test conducted with three axes of motion — rotation, flexion, and abduction — to a test conducted with two axes of motion — rotation and flexion. The absence of the abduction eliminated a significant degree of nonlinear motion (cross-shear) and, consequently, the wear rate was significantly lower than that seen in the test with abduction.


1996 ◽  
Vol 5 (2) ◽  
pp. 096369359600500
Author(s):  
M.Q. Zhang ◽  
K. Friedrich ◽  
K. Batzar ◽  
P. Thomas

Abrasive wear behavior of fluoropolymer based composite coatings was investigated by using a particular wear testing method, the Nord Test. It was found that the abrasion process was a decelerated one due to a transition from three-body abrasion to two-body sliding wear. Coating thickness but not material microstructure controlled the wear performance of the present coating systems.


Sign in / Sign up

Export Citation Format

Share Document