Development of Novel Natural Composites with Fly Ash Reinforcements and Investigation of their Tensile Properties

2016 ◽  
Vol 852 ◽  
pp. 55-60 ◽  
Author(s):  
A. Praveen Kumar ◽  
M. Nalla Mohamed ◽  
K. Kurien Philips ◽  
J. Ashwin

Increasing demand for special materials leads to new inventions. One of the most promising inventions is the concept of composites. Natural fibers have the potential as a reinforcing material as an alternative to the use of glass, carbon and other synthetic fibers in automotive industries. Among various natural fibers, Kenaf is a widely used fiber due to its easy availability, low density, low production cost and satisfactory mechanical properties. To enhance the mechanical properties of natural fibre composites, strengthening of the matrix and fibre is very much essential. A prospective reinforcement in this regard is fly ash, which is abundantly available as a waste product from thermal power plants. In this paper, a new novel natural composite with epoxy as a resin and reinforcing both bio waste (Kenaf) and industrial waste (Fly ash) has been developed. All the laminates were prepared with a total of 4 plies. Laminates without fly ash filler were also fabricated for comparison purpose. A hand lay-up method was used for the fabrication of composites and was tested as per ASTM standards for evaluation of tensile properties. The effect of fly ash weight percentage (5, 10, 15% wt.) on tensile properties was studied experimentally. Due to the incorporation of fly ash fillers into the kenaf fiber composites, there is considerable improvement in the mechanical properties. Overall results supported the effective utilization of natural composites for automotive applications.

Author(s):  
B.K. Venkatesh ◽  
R. Saravanan

Cenosphere is a ceramic-rich industrial waste produced during burning of coal in the thermal power plants. This study deals with the effect of cenosphere as particulate filler on mechanical behaviour of woven bamboo-glass hybrid composites. The hybrid composite consists of bamboo and E-glass fiber as reinforcement and epoxy as matrix. Cenosphere of different weight percentage (0.5, 1, 1.5 and 2 %) was added to the hybrid composite. The samples were tested as per ASTM standards for their mechanical properties to establish the effect of filler content. It is found that the mechanical properties are significantly influenced by addition of waste ceramic filler cenosphere up to 2 wt.% and increases the tensile, flexural and inter-laminar shear strength in comparison to unfilled composite. Finite element analysis is also done using Midas NFX and the simulation results are compared with experimental results. From the results, it has been found that the experimental values obtained from tensile testing and flexure testing nearly matches with finite element values.


2020 ◽  
Vol 1159 ◽  
pp. 100-111
Author(s):  
G.N. Lokesh ◽  
G.P. Prasad ◽  
Subramanya Raghavendra ◽  
K.P. Prashanth

Fly ash is the waste product coming out from thermal power plant is an increasingly urgent problem due to its storage and disposal. At the same time Metal Matrix composites (MMCs) reinforced with ceramic particles such as SiC, Al2O3 and B4C has their partial use in engineering application due to higher cost. The study focuses on the Al-Cu alloy reinforced fly ash particles produced by stir casting followed by hot extrusion. The composites produced by incorporation of fly ash reinforcements by varying 2%, 4%, 6%, 8% and 10wt% is hot extruded with an extrusion temperature of 400°C, extrusion rate of 5mm/s and extrusion ratio of 1.77:1. The extrusion composites have been evaluated based on the investigation of mechanical properties and microstructure. The results showed that, the amount of porosity increased with increasing the percentage of fly ash reinforcements in stir cast and the extruded composites is almost gratis from porosity. Hardness and tensile strength of composites increases with increases in percentage of reinforcement by stir and extruded composites. But extruded composites show better mechanical properties than stir cast composites. Wear test under different loads and for 45 minutes duration have been conducted on both cast and extruded composites. The worn surfaces have been observed under Scanning electron microscope (SEM) to understand the mechanism of wear. Extruded composites possess lower wear rates under all studied loads with constant sliding velocities when compared with cast composites. Microstructural study using SEM shows that the fly ash particulates in the molten matrix forms strong matrix reinforcement interface and their distribution might have led to the increase in mechanical properties of the composites due to fine grain structure during extrusion and dislocation density in the matrix.


2021 ◽  
Vol 889 (1) ◽  
pp. 012011
Author(s):  
Ajay Rana ◽  
Abhishek Sharma ◽  
Kshitij Jassal

Abstract In concrete industry, a huge amount of natural aggregates is used in the making of concrete every day. The environment is being exploited by mining for the gain of natural aggregates, resulting in an environmental instability in nature. As a result, an alternate source to substitute natural aggregates in concrete is required. A lot of waste materials have gain attention now a days into the concrete industry as a substitute to natural materials. Fly ash, a waste product of thermal power plants, meets the criterion for being utilised as an aggregate substitute in concrete because of its pozzolanic activity. Coarse fly ash is manufactured using a good manufacturing method and is light in weight. Keeping this into view, the impact of partial replacement of natural coarse aggregates with coarse fly ash aggregates produced using the colds bonded method is explored in this paper. The major focus of this study is on testing for flexural strength of self-cured concrete, as flexural strength is a key criterion for rigid pavement design. In this study, coarse fly ash aggregates are utilised in concrete in different proportions to substitute natural aggregates, and the optimal value for flexural strength is determined using a curing additive. The findings of this experiment indicated that when fly ash aggregates and curing additives were used optimally, the flexure strength improved, which is enough for the construction of rigid pavement as criteria fixed by Indian Standards.


Author(s):  
H. S. Dhindsa ◽  
R. D. Sharma ◽  
Rakesh Kumar

The poor infiltration and fine texture of clay soil causes water logging problem and reduces biological activities in soil. In contrast to this, loose particle and higher in filterability in sandy soil results in low water holding capacity and poor nutrient retention. Fly ash, a waste product of thermal power plants, causes environmental pollution and is hazardous to human health. It is produced in plenty; therefore, safe disposal is very difficult. Fly ash may be used as amendment to improve soil properties and plant growth in such soils. The addition of 20% fly ash in clayey soil and up to 30% in sandy soils improved the germination, tillering, plant height, biological and grain yield of wheat. The addition of fly-ash has also shown improvement in the soil properties <italic>viz</italic>. texture, structure and bulk density. Permeability of clay loam soil increased from 0.54cm/hr to 2.14cm/hr by the addition of 50% fly ash whereas it decreased from 23.80 cm/hr to 9.67 cm/hr in sandy soil by 50% fly-ash addition. Water holding capacity of sandy soil also increased from 0.38 cm/cm to 0.53 cm/cm at 50% level.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Tuan Anh Nguyen ◽  
Thi Mai Huong Pham

Small and light fly ash is a by-product of thermal power plants, in which oxides mainly present in fly ash are suitable to reinforce composite materials. Its content accounts for 10, 20, 30, 40, and 50% of those materials. However, due to the smooth surface, it cannot stick completely in plastics. Therefore, in this work, it was studied to combine nanoclay additive (I.30 E) with 1, 3, and 5% by weight to synergize to improve mechanical strength, fire retardation, and electrical properties. Mechanical properties and flame retardant properties have improved markedly. At the combined ratio of 40% by weight of fly ash and 3% nanoclay, nanocomposites have tensile strength values of 64.12 MPa, flexural strength of 89.27 MPa, compressive strength of 215.23 MPa, and impact resistance of Izod 14.45 kJ/m2, oxygen index limited to 26.8% of fire retardant material. In terms of dielectric strength, the electric strength of pure epoxy is 17.5 kV/mm, higher than that before adding nanoclay (12.7 kV/mm). The presence of nanoclays in the material creates a tortuous electric path, slowing the propagation of the power plant, which is the main factor that improves the breaking strength of the nanocomposite.


2020 ◽  
Vol 61 (HTCS6) ◽  
pp. 10-18
Author(s):  
Dung Trong Nguyen ◽  
Lam Van Tang ◽  
Hung Xuan Ngo ◽  
Phi Van Dang ◽  
Cuong Anh Ho ◽  
...  

In Vietnam, thermal power plants produce millions of tons of fly ash per year and cause a lot of problems for the environment. The re-use of fly ash as mineral additives in the production of building materials such as cement, concrete etc is a comprehensive solution that brings high socio-economic efficiency. However, to achieve high efficiency, the technical specifications index of fly ash needs to be studied and evaluated in detail because the content of added fly ash is very important for producing and manufacturing processes. This paper aims to study the influence of Formosa fly ash on the mechanical properties at the early age of cement paste. The mechanical properties of the samples which contain alternatively 10÷30% of fly ash was measured at the early ages (1, 3, and 7 days) by experimental methods. In addition, the microstructure analysis and differential thermal analysis methods have been used to interpret the obtained results.


2018 ◽  
Vol 189 ◽  
pp. 05002
Author(s):  
W.V. Vicki. ◽  
Taness Santhana Rajah ◽  
S. Selvakumar.

Environmental and open public health aspects have an important and increasing role, especially in the exploration of natural fibers from recycle materials. The aim of this study is to synthesis cellulose from office waste paper and use it as a reinforcement filler to develop biocomposites. Epoxy reinforced kenaf fiber and cellulose composite were prepared in this study using polymer casting technique consisting of grinded kenaf fibre (natural fibre) 5% and epoxy 95% as reinforcement element. Cellulose was synthesized from recycled office papers and used as a filler to prepare cellulose/kenaf reinforced epoxy composite. Effect of cellulose to the mechanical properties of the composite were investigated. Samples were fabricated by weight percentage of 0%, 0.5%, 1.0%, 1.5% and 2.0% of cellulose content. For mechanical properties impact test, Rockwell harness and tensile testings were conducted.


2017 ◽  
Vol 47 (8) ◽  
pp. 2050-2073 ◽  
Author(s):  
A Praveen Kumar ◽  
M Nalla Mohamed

Economic and environmental concerns lead the researchers toward development of sustainable and renewable materials of which reinforced composites are part of. The abundantly available natural fibers have attracted the researchers to study their performance as reinforcements and feasibility for making automobile components. The performance of composite materials is mainly assessed through their mechanical properties. However, natural fibers to date were mainly used as reinforcements to create bulk composite components with reduced cost rather than improved mechanical performances. Among the methods available for improving mechanical properties of the natural fiber composites, combined mercerization treatment, hybridization, and incorporation of fly ash fillers in the matrix are the best solutions. Therefore, the objective of this research is to evaluate the tensile properties of hybrid kenaf/glass composites with and without fly ash particulate filler as per ASTM standards. Moisture absorption behavior and its effect on the tensile properties of hybrid composites are also investigated. The results revealed that the addition of 10wt % fly ash particles with natural fiber composites increased the tensile strength of composites while hybridization with glass fibers reduced the water absorption properties.


2021 ◽  
Vol 887 ◽  
pp. 528-535
Author(s):  
V.A. Kalneus ◽  
D.A. Nemushchenko ◽  
V.V. Larichkin ◽  
A.A. Briutov

The article analyses the influence of SiO2 and Al2O3 nanopowders on properties of ceramics consisting of fly ash from thermal power plants, glass waste, and clay binder. Based on studies of physical and mechanical properties of the obtained ceramics (ultimate compressive strength, ultimate three-point bending strength, wear resistance, and water absorption), the paper shows the positive influence of the nanoadditives. The optimal number of SiO2 and Al2O3 nanopowders in the formulation is 0.5 wt. % that has the strongest effect on ultimate compressive strength and water absorption of the fly ash ceramics samples. The direction of further research on improving the properties of ceramic products is an application of the Al2O3 nanopowder as more perspective nanoadditive using clay dispersant.


2019 ◽  
Vol 93 ◽  
pp. 02008
Author(s):  
Tribikram Mohanty ◽  
Sauna Majhi ◽  
Purnachandra Saha ◽  
Bitanjaya Das

Due to rapid industrialization extensive quantity of waste materials like fly ash, silica fume, rice ash husk, and ferrochrome ash etc. are generated. Ferrochrome ash is generated from Ferro-alloy industry and fly-ash is produced in thermal power plants are alternative materials which have the potential of being utilized in concrete as a mineral admixture. The present investigation considers the combined influence on strength of concrete using various percentage fly ash and ferrochrome ash as partial replacement of cement. Experiments are carried out to get mechanical properties of ordinary Portland cement by replacement of fly ash by 10%, 20%, 30 % and 3% by ferrochrome ash. Mechanical properties are measured by determining compressive strength, split tensile strength and flexural strength. It can be inferred from the study that a small amount of ferrochrome ash mixed with 30 % fly-ash gives higher compressive strength as compared to fly ash alone. Addition of ferrochrome ash also increases the split tensile strength of concrete. Since ferrochrome ash and fly-ash are both industrial waste, utilization of these waste materials reduced the burden of dumping and greenhouse gas and thereby produce sustainable concrete.


Sign in / Sign up

Export Citation Format

Share Document