The Trapezoid Counterweight Method in Dynamic Balance of Symmetric Flexible Rotor

2017 ◽  
Vol 868 ◽  
pp. 201-206
Author(s):  
Han Hui ◽  
Li Na Hao ◽  
Zhang Qi ◽  
Gao Xiang

Steam turbine generator unit, water pump and other high speed revolution symmetric flexible rotor were regarded as research objects in this paper. According to variation characteristic of rotor shaft in rigid and flexible working mode, nine-reel high pressure water pump rotor was analyzed. The former four-order intrinsic frequency of flexible rotor was obtained by modal analysis and harmonic response analysis. The methods of reaction force response and unbalance response were been studied after first order and second order resonance region eliminating in different modes of simple harmonic exciting force. Based on above theoretical research results, trapezoid counterweight method was proposed for dynamic balance of flexible rotor. This method solved problem that rigid dynamic balance of low speed rotor was destroyed after first order and second order resonance region counter weight in dynamic balance of flexible rotor. The dynamic balancing techniques of flexible rotor could be improved the qualities of rotor and its relative products by this method, eliminating the vibration of unbalance mass of products radically.

2021 ◽  
Vol 11 (12) ◽  
pp. 5647
Author(s):  
Nanxiang Guan ◽  
Ao Wang ◽  
Yongpeng Gu ◽  
Zhifeng Xie ◽  
Ming Zhou

Vibration is an important issue faced by reciprocating piston engines, and is caused by reciprocating inertia forces of the piston set. To reduce the vibration without changing the main structure and size of the original engine, we proposed a novel coaxial balance mechanism design based on a compact unit body. By introducing a second-order balance mass, this mechanism can significantly increase the efficiency of vibration reduction. The proposed mechanism can effectively balance the first-order and second-order inertia forces with the potential of balancing high-order inertia forces. To accurately determine the second-order balance mass, a closed-form method was developed. Simulation results with a single-cylinder piston DK32 engine demonstrate the effectiveness and advantage of the proposed mechanism. At a crankshaft speed of 2350 r/min, compared with the first-order balance device, the average root mean square velocity of the test points on the engine’s cylinder was reduced by 97.31%, and the support reaction force was reduced by 96.54%.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Baizhan Xia ◽  
Dejie Yu

The acoustic field with convex parameters widely exists in the engineering practice. The vertex method and the anti-optimization method are not considered as appropriated approaches for the response analysis of acoustic field with convex parameters. The shortcoming of the vertex method is that the local optima out of vertexes cannot be identified. The disadvantage of the anti-optimization method is that the analytical formulation of response may be not obtained. To analyze the acoustic field with convex parameters efficiently and effectively, a first-order convex perturbation method (FCPM) and a second-order convex perturbation method (SCPM) are presented. In FCPM, the response of the acoustic field with convex parameters is expanded with the first-order Taylor series. In SCPM, the response of the acoustic field with convex parameters is expanded with the second-order Taylor series neglecting the nondiagonal elements of Hessian matrix. The variational bounds of the expanded responses in FCPM and SCPM are yielded by the Lagrange multiplier method. The accuracy and efficiency of FCPM and SCPM are investigated by numerical examples.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Zhenyong Lu ◽  
Shun Zhong ◽  
Huizheng Chen ◽  
Yushu Chen ◽  
Jiajie Han ◽  
...  

In this paper, a simplified dynamic model of a dual-rotor system coupled with blade disk is built, and the effects of blade parameters of an aircraft engine on the dynamic characteristics of a dual-rotor system are studied. In the methodology, the blade is simplified as a cantilever structure, and the dynamical equations are obtained by the means of a finite element method. The amplitude-frequency response curves and orbits of shaft centre-vibration shape diagram are used to analyze the effects of blade parameters on dynamic characteristics of a dual-rotor system. The results indicate that the properties of the blades have huge impacts on the critical speed and other dynamic characteristics of the system. With an increase of the length of the blade, the second-order critical speed decreases obviously, but the first-order critical speed is almost invariant; this means that the blades attached on the low-pressure compressor do not affect the first-order critical speed of the dual-rotor system. Meanwhile, note that the high-pressure rotor and low-pressure turbine rotor can excite the first-order resonance of the dual-rotor system, while the low-pressure compressor rotor can only excite the second-order resonance, and then the dynamic model of this six-point support dual-rotor system can further be simplified as a relatively independent single-rotor system with one disk and a four-support dual-rotor system with dual disks.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 315-318 ◽  
Author(s):  
K. Momose ◽  
K. Komiya ◽  
A. Uchiyama

Abstract:The relationship between chromatically modulated stimuli and visual evoked potentials (VEPs) was considered. VEPs of normal subjects elicited by chromatically modulated stimuli were measured under several color adaptations, and their binary kernels were estimated. Up to the second-order, binary kernels obtained from VEPs were so characteristic that the VEP-chromatic modulation system showed second-order nonlinearity. First-order binary kernels depended on the color of the stimulus and adaptation, whereas second-order kernels showed almost no difference. This result indicates that the waveforms of first-order binary kernels reflect perceived color (hue). This supports the suggestion that kernels of VEPs include color responses, and could be used as a probe with which to examine the color visual system.


2017 ◽  
Vol 9 (3) ◽  
pp. 17-30
Author(s):  
Kelly James Clark

In Branden Thornhill-Miller and Peter Millican’s challenging and provocative essay, we hear a considerably longer, more scholarly and less melodic rendition of John Lennon’s catchy tune—without religion, or at least without first-order supernaturalisms (the kinds of religion we find in the world), there’d be significantly less intra-group violence. First-order supernaturalist beliefs, as defined by Thornhill-Miller and Peter Millican (hereafter M&M), are “beliefs that claim unique authority for some particular religious tradition in preference to all others” (3). According to M&M, first-order supernaturalist beliefs are exclusivist, dogmatic, empirically unsupported, and irrational. Moreover, again according to M&M, we have perfectly natural explanations of the causes that underlie such beliefs (they seem to conceive of such natural explanations as debunking explanations). They then make a case for second-order supernaturalism, “which maintains that the universe in general, and the religious sensitivities of humanity in particular, have been formed by supernatural powers working through natural processes” (3). Second-order supernaturalism is a kind of theism, more closely akin to deism than, say, Christianity or Buddhism. It is, as such, universal (according to contemporary psychology of religion), empirically supported (according to philosophy in the form of the Fine-Tuning Argument), and beneficial (and so justified pragmatically). With respect to its pragmatic value, second-order supernaturalism, according to M&M, gets the good(s) of religion (cooperation, trust, etc) without its bad(s) (conflict and violence). Second-order supernaturalism is thus rational (and possibly true) and inconducive to violence. In this paper, I will examine just one small but important part of M&M’s argument: the claim that (first-order) religion is a primary motivator of violence and that its elimination would eliminate or curtail a great deal of violence in the world. Imagine, they say, no religion, too.Janusz Salamon offers a friendly extension or clarification of M&M’s second-order theism, one that I think, with emendations, has promise. He argues that the core of first-order religions, the belief that Ultimate Reality is the Ultimate Good (agatheism), is rational (agreeing that their particular claims are not) and, if widely conceded and endorsed by adherents of first-order religions, would reduce conflict in the world.While I favor the virtue of intellectual humility endorsed in both papers, I will argue contra M&M that (a) belief in first-order religion is not a primary motivator of conflict and violence (and so eliminating first-order religion won’t reduce violence). Second, partly contra Salamon, who I think is half right (but not half wrong), I will argue that (b) the religious resources for compassion can and should come from within both the particular (often exclusivist) and the universal (agatheistic) aspects of religious beliefs. Finally, I will argue that (c) both are guilty, as I am, of the philosopher’s obsession with belief. 


Author(s):  
Zhenhua Li ◽  
Weihui Jiang ◽  
Li Qiu ◽  
Zhenxing Li ◽  
Yanchun Xu

Background: Winding deformation is one of the most common faults in power transformers, which seriously threatens the safe operation of transformers. In order to discover the hidden trouble of transformer in time, it is of great significance to actively carry out the research of transformer winding deformation detection technology. Methods: In this paper, several methods of winding deformation detection with on-line detection prospects are summarized. The principles and characteristics of each method are analyzed, and the advantages and disadvantages of each method as well as the future research directions are expounded. Finally, aiming at the existing problems, the development direction of detection method for winding deformation in the future is prospected. Results: The on-line frequency response analysis method is still immature, and the vibration detection method is still in the theoretical research stage. Conclusion: The ΔV − I1 locus method provides a new direction for on-line detection of transformer winding deformation faults, which has certain application prospects and practical engineering value.


2009 ◽  
Vol 74 (1) ◽  
pp. 43-55 ◽  
Author(s):  
Dennis N. Kevill ◽  
Byoung-Chun Park ◽  
Jin Burm Kyong

The kinetics of nucleophilic substitution reactions of 1-(phenoxycarbonyl)pyridinium ions, prepared with the essentially non-nucleophilic/non-basic fluoroborate as the counterion, have been studied using up to 1.60 M methanol in acetonitrile as solvent and under solvolytic conditions in 2,2,2-trifluoroethan-1-ol (TFE) and its mixtures with water. Under the non- solvolytic conditions, the parent and three pyridine-ring-substituted derivatives were studied. Both second-order (first-order in methanol) and third-order (second-order in methanol) kinetic contributions were observed. In the solvolysis studies, since solvent ionizing power values were almost constant over the range of aqueous TFE studied, a Grunwald–Winstein equation treatment of the specific rates of solvolysis for the parent and the 4-methoxy derivative could be carried out in terms of variations in solvent nucleophilicity, and an appreciable sensitivity to changes in solvent nucleophilicity was found.


Author(s):  
Uriah Kriegel

Brentano’s theory of judgment serves as a springboard for his conception of reality, indeed for his ontology. It does so, indirectly, by inspiring a very specific metaontology. To a first approximation, ontology is concerned with what exists, metaontology with what it means to say that something exists. So understood, metaontology has been dominated by three views: (i) existence as a substantive first-order property that some things have and some do not, (ii) existence as a formal first-order property that everything has, and (iii) existence as a second-order property of existents’ distinctive properties. Brentano offers a fourth and completely different approach to existence talk, however, one which falls naturally out of his theory of judgment. The purpose of this chapter is to present and motivate Brentano’s approach.


Author(s):  
Tim Button ◽  
Sean Walsh

In this chapter, the focus shifts from numbers to sets. Again, no first-order set theory can hope to get anywhere near categoricity, but Zermelo famously proved the quasi-categoricity of second-order set theory. As in the previous chapter, we must ask who is entitled to invoke full second-order logic. That question is as subtle as before, and raises the same problem for moderate modelists. However, the quasi-categorical nature of Zermelo's Theorem gives rise to some specific questions concerning the aims of axiomatic set theories. Given the status of Zermelo's Theorem in the philosophy of set theory, we include a stand-alone proof of this theorem. We also prove a similar quasi-categoricity for Scott-Potter set theory, a theory which axiomatises the idea of an arbitrary stage of the iterative hierarchy.


Author(s):  
Huineng Wang ◽  
Yanfeng Guo ◽  
Yungang Fu ◽  
Dan Li

This study introduces the opinion of the corrugation hierarchy to develop the second-order corrugation paperboard, and explore the deformation characteristics, yield strength, and energy absorbing capacity under out-of-plane static evenly compression loading by experimental and analytical approaches. On the basis of the inclined-straight strut elements of corrugation unit and plastic hinge lines, the yield and crushing strengths of corrugation unit were analyzed. This study shows that as the compressive stress increases, the second-order corrugation core layer is firstly crushed, and the first-order corrugation structures gradually compacted until the failure of entire structure. The corrugation type has an obvious influence on the yield strength of the corrugation sandwich panel, and the yield strength of B-flute corrugation sandwich panel is wholly higher than that of the C-flute structure. At the same compression rate, the flute type has a significant impact on energy absorption, and the C-flute second-order corrugation sandwich panel has better bearing capacity than the B-flute structure. The second-order corrugation sandwich panel has a better bearing capacity than the first-order structure. The static compression rate has little effect on the yield strength and deformation mode. However, with the increase of the static compression rate, the corrugation sandwich panel has a better cushioning energy absorption and material utilization rate.


Sign in / Sign up

Export Citation Format

Share Document