The Effect of Sintering Temperature on Physical Properties of Leucite Ceramics

2019 ◽  
Vol 891 ◽  
pp. 214-218
Author(s):  
Jirasak Tharajak ◽  
Noppakun Sanpo

Leucite has been widely used as a constituent of dental ceramics to modify the coefficient of thermal expansion. This is most important where the ceramic is to be fused or baked onto metal. However, its physical property was unpredictable since it was sensitive to several parameters such as sintering temperature and concentration of raw materials. In this research study, leucite ceramic particles were synthesized by in-house sol-gel process. The morphology and size of our synthesized leucite particles were analyzed by SEM, vicker hardness and XRD, respectively. It was revealed that the sintering temperature played the important role on several properties of leucite ceramic particles.

2019 ◽  
Vol 891 ◽  
pp. 219-223
Author(s):  
Jirasak Tharajak ◽  
Noppakun Sanpo

Silicone based coating was considered a high performance coatings used to preserve or protect a variety of different materials. However, its mechanical property was a weakness for using in several applications. In this research study, leucite ceramic particles were added to silicone coating in order to improve some mechanical properties. Leucite ceramic particles were synthesized by in-house sol-gel process. The morphology and size of our synthesized leucite particles were analyzed by SEM and XRD, respectively. It was revealed that the concentration and size of leucite ceramic particles played the important role on several properties of silicone coating.


2011 ◽  
Vol 197-198 ◽  
pp. 436-439
Author(s):  
Min Hua Luo ◽  
Zhuo Hao Xiao

Li2O-Al2O3-P2O5-SiO2 xerogel powders were synthesized by sol-gel route and glass-ceramics were prepared under different forming pressure and sintering temperature. The effects of sintering temperature and forming pressure on coefficient of thermal expansion of prepared glass-ceramics were investigated by means of DTA-TG, TEC and XRD. The results indicate that xerogel powders crystallization begins at 785°C, and the main crystallite phases in the researched specimens are virgilite and cristobalite. The TEC decreases linearly with the forming pressure. When the sintering temperature is 950°C and forming pressure is 40MPa, a low TEC of 0.65×10-6 °C-1 can be obtained.


1999 ◽  
Vol 606 ◽  
Author(s):  
Keishi Nishio ◽  
Jirawat Thongrueng ◽  
Yuichi Watanabe ◽  
Toshio Tsuchiya

AbstructWe succeeded in the preparation of strontium-barium niobate (Sr0.3Ba0.7Nb2O6 : SBN30)that have a tetragonal tungsten bronze type structure thin films on SrTiO3 (100), STO, or La doped SrTiO3 (100), LSTO, single crystal substrates by a spin coating process. LSTO substrate can be used for electrode. A homogeneous coating solution was prepared with Sr and Ba acetates and Nb(OEt)5 as raw materials, and acetic acid and diethylene glycol monomethyl ether as solvents. The coating thin films were sintered at temperature from 700 to 1000°C for 10 min in air. It was confirmed that the thin films on STO substrate sintered above 700°C were in the epitaxial growth because the 16 diffraction spots were observed on the pole figure using (121) reflection. The <130> and <310> direction of the thin film on STO were oriented with the c-axis in parallel to the substrate surface. However, the diffraction spots of thin film on LSTO substrate sintered at 700°C were corresponds to the expected pattern for (110).


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3365
Author(s):  
Justyna Zygmuntowicz ◽  
Magdalena Gizowska ◽  
Justyna Tomaszewska ◽  
Paulina Piotrkiewicz ◽  
Radosław Żurowski ◽  
...  

This work focuses on research on obtaining and characterizing Al2O3/ZrO2 materials formed via slip casting method. The main emphasis in the research was placed on environmental aspects and those related to the practical use of ceramic materials. The goal was to analyze the environmental loads associated with the manufacturing of Al2O3/ZrO2 composites, as well as to determine the coefficient of thermal expansion of the obtained materials, classified as technical ceramics. This parameter is crucial in terms of their practical applications in high-temperature working conditions, e.g., as parts of industrial machines. The study reports on the four series of Al2O3/ZrO2 materials differing in the volume content of ZrO2. The sintering process was preceded by thermogravimetric measurements. The fabricated and sintered materials were characterized by dilatometric study, scanning electron microscopy, X-ray diffraction, and stereological analysis. Further, life cycle assessment was supplied. Based on dilatometric tests, it was observed that Al2O3/ZrO2 composites show a higher coefficient of thermal expansion than that resulting from the content of individual phases. The results of the life cycle analysis showed that the environmental loads (carbon footprint) resulting from the acquisition and processing of raw materials necessary for the production of sinters from Al2O3 and ZrO2 are comparable to those associated with the production of plastic products such as polypropylene or polyvinyl chloride.


2019 ◽  
Vol 8 (1) ◽  
pp. 39 ◽  
Author(s):  
Susanto Susanto ◽  
Ricka Prasdiantika

Synthesis of Fe3O4@SiO2 modified with propyldiethylenetriamine (Fe3O4@SiO2@PDETA) with variation of synthesis routes have been investigated. Research was begun with synthesis of Fe3O4 using dispersion agent of trisodium citrate at coprecipitation system through stirring using ultrasonic wave. Coating magnetite with propyldiethylenetriamine modified silica was carried out through sol-gel process with two different mixing sequences of raw materials (two synthesis routes) with main materials of Fe3O4 synthesized, N-[3-(Trimethoxysilyl)propyl]-diethylenetriamine (TMSPDETA) and Na2SiO3. The products were characterized by fourier transform infrared (FTIR) spectrophotometer and scanning electron microscope-energy dispersive X-ray (SEM-EDX). Results indicate that Fe3O4@SiO2@PDETA has been synthesized succesfully. Fe3O4@SiO2@PDETA synthesized through route 1 (magnetite mixed with a mixture TMSPDETA and Na2SiO3) contains more propyldiethylenetriamine group than that of through route 2 (magnetite mixed with Na2SiO3 solution, then mixed with TMSPDETA)


2020 ◽  
Vol 842 ◽  
pp. 121-126
Author(s):  
Ji Hui Luo ◽  
Qiu Yue Wen ◽  
Shu Liu ◽  
Ting Liu ◽  
Su Ting Wei ◽  
...  

TiO2 films were prepared by sol-gel method with butyl titanate, anhydrous ethanol, acetyl acetone and hydrochloric acid as raw materials, which were sintered at 380 °C and 530 °C respectively to obtain TiO2 films. XRD was used for analyzing the crystal structure of TiO2 film, and ImageJ software was used to detect the light transmittance of TiO2 film samples. The results show that the film sintered at 530 °C is brookite structure and the film sintered at 380 °C is anatase structure. The increase of sintering temperature is not conducive to the growth of TiO2 film grains. TiO2 films sintered at 380 °C have good light transmittance.


2013 ◽  
Vol 860-863 ◽  
pp. 845-848 ◽  
Author(s):  
De Yi Li ◽  
Kun Peng ◽  
Ling Ping Zhou ◽  
Jia Jun Zhu

SiO2 antireflective films were prepared by two-step catalyzed sol-gel method with TEOS as the raw materials, acid and ammonia as catalyst. Effects of the ratio of acid-catalyzed and base-catalyzed silica sols on the transmittance and stability of SiO2 film were investigated. The transmittance can be adjusted by change the ratio of base-catalyzed sols, and a higher transmittance can be obtained in the higher ratio of base-catalyzed coatings. A higher stability of SiO2 film in salt spray can be obtained in higher ratio of acid-catalyzed AR coatings. AR coatings with excellent transmittance and stability can be obtained by adjusting the ratio of acid/base catalyzed silica sols.


2012 ◽  
Vol 512-515 ◽  
pp. 207-210
Author(s):  
Quan Wen ◽  
Jian Feng Huang ◽  
Li Yun Cao ◽  
Jian Peng Wu

V2O5 powders were successfully synthesized by the EDTA assistanced ultrasound sol-gel process using NH4VO3 and EDTA, NH3•H2O as raw materials. The synthesized activation energy and the influence of pH values and the calcination temperatures on the phases and microstructures of powders were particularly investigated. The precursor powders and the V2O5 powders were characterized by X-ray diffraction (XRD), fourier transform inelectron microscopy (FT-IR), scanning electron microscopy (SEM) and differential scanning calorimetry-thermal gravimetric (DSC-TG). Results show that the obtained products exhibit good crystallization under the conditions of pH=4, calcination temperature 400~500 °C and calcination time 0.5 h during the synthesizing process. The as-prepared V2O5 powders show preferred growth orientation along (001) plane at the pH=4. By DSC analysis, the ultrasonic cavitation result in the decrease in synthesized activation energy obviously than that was prepared without ultrasonic irradiation.


Sign in / Sign up

Export Citation Format

Share Document