Magnetization Reversal in PrCrO3

2015 ◽  
Vol 1086 ◽  
pp. 96-100 ◽  
Author(s):  
Rao B. Venugopal ◽  
Prasad B. Vittal ◽  
Rao G. Narsinga ◽  
F.C. Chou ◽  
Babu D. Suresh

PrCrO3(PCO) samples were prepared by Citric acid route .The samples were characterized by XRD and SEM. The sample exhibits a single phase orthorhombic structure with Pbnm space group. The temperature dependent and field dependent magnetic measurements were measured in the range of 5K-400K at 100 Oe field and 0 to 5T field at 5K and RT respectively .The temperature dependence of dc magnetic properties show that the ZFC and FC magnetization curves are irreversible strongly and nearly symmetrical below 240K .There appears a novel magnetization behavior with negative magnetization characteristic in ZFC, the diamagnetism like behavior .This behavior exhibits the coexistence of canted anti-ferromagnetic and weak ferromagnetic phase and the existence of competition mechanism below 240K . This behavior can be interpreted from the interaction between Pr3+and Cr3+moments .The field and temperature dependent magnetization indicates the phase transition from canted anti ferromagnetic to paramagnetic occurred below 240K. In the region of higher temperature above 240K, PrCrO3behaved as a typical Curie-Weiss paramagnetic.Keywords: Orthochromites ,Multiferroics ,Neel temperature.PACS: 75.85 +t, 75.60 d, 75.50.Ee,75.30 Et,76.30 Kg

MRS Advances ◽  
2019 ◽  
Vol 4 (40) ◽  
pp. 2177-2184 ◽  
Author(s):  
L. M. Martinez ◽  
C. L. Saiz ◽  
A. Cosio ◽  
R. Olmos ◽  
H. Iturriaga ◽  
...  

ABSTRACTThe bulk van der Waals crystal Mn3Si2Te6 (MST) has been irradiated with a proton beam of 2 MeV at a fluence of 1×1018 H+ cm-2. The temperature dependent magnetization measurements show a drastic decrease in the magnetization of 49.2% in the H//c direction observed in ferrimagnetic state. This decrease in magnetization is also reflected in the isothermal magnetization curves. No significant change in the ferrimagnetic transition temperature (75 K) was reflected after irradiation. Electron paramagnetic resonance (EPR) spectroscopy shows no magnetically active defects present after irradiation. Here, experimental findings gathered from MST bulk crystals via magnetic measurements, magnetocaloric effect, and heat capacity are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shella Permatasari Santoso ◽  
Vania Bundjaja ◽  
Artik Elisa Angkawijaya ◽  
Chintya Gunarto ◽  
Alchris Woo Go ◽  
...  

AbstractNitrogen-grafting through the addition of glycine (Gly) was performed on a metal- phenolic network (MPN) of copper (Cu2+) and gallic acid (GA) to increase its adsorption capacity. Herein, we reported a one-step synthesis method of MPN, which was developed according to the metal–ligand complexation principle. The nitrogen grafted CuGA (Ng-CuGA) MPN was obtained by reacting Cu2+, GA, and Gly in an aqueous solution at a molar ratio of 1:1:1 and a pH of 8. Several physicochemical measurements, such as Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), N2 sorption, X-ray diffraction (XRD), and thermal gravimetry analysis (TGA), were done on Ng-CuGA to elucidate its characteristics. The analysis revealed that the Ng-CuGA has non-uniform spherical shaped morphology with a pore volume of 0.56 cc/g, a pore size of 23.25 nm, and thermal stability up to 205 °C. The applicational potential of the Ng-CuGA was determined based on its adsorption capacity against methylene blue (MB). The Ng-CuGA was able to adsorb 190.81 mg MB per g adsorbent at a pH of 6 and temperature of 30 °C, which is 1.53 times higher than the non-grafted CuGA. Detailed assessment of Ng-CuGA adsorption properties revealed their pH- and temperature-dependent nature. The adsorption capacity and affinity were found to decrease at a higher temperature, demonstrating the exothermic adsorption behavior.


1995 ◽  
Vol 384 ◽  
Author(s):  
Randolph E. Treece ◽  
P. Dorsey ◽  
M. Rubinstein ◽  
J. M. Byers ◽  
J. S. Horwitz ◽  
...  

ABSTRACTThick films (0.6 and 2.0 μm) of the colossal magnetoresistance (CMR) material, La0.7Ca0.3MnO3 (LCMO), have been grown by pulsed laser deposition (PLD). The films were grown from single-phase LCMO targets in 100 mTorr 02 pressures and the material deposited on (100) LaAlO3 substrates at deposition temperatures of 800°C. The deposited films were characterized by X-ray diffraction (XRD), magnetic field-dependent resistivity, and Rutherford backscattering spectroscopy (RBS). The LCMO films were shown by XRD to adopt an orthorhombic structure. Brief post-deposition annealing led to ~50,000% and ~12,000% MR effect in the 0.6 μm and 2.0 μm films, respectively.


2013 ◽  
Vol 802 ◽  
pp. 218-222 ◽  
Author(s):  
Wanatchaporn Namhongsa ◽  
Tosawat Seetawan ◽  
Pennapa Muthitamongkol ◽  
Chanchana Thanachayanont

The polycrystalline of sodium cobalt oxide (Na0.5CoO2) was synthesized by solid state reaction method and sintering method. The microstructure was composed of powder size and crystal structure. The Seebeck coefficient and electrical resistivity are measured. We found that the concentration of sodium ions sandwiched between two neighboring CoO2layers played a crucial role in transport properties. The results showed small particle size, single phase and orthorhombic structure. The Seebeck coefficient of Na0.5CoO2increased as the temperature increased. The electrical resistivity was decreased as temperature decreased from the range 300-500 K.


2014 ◽  
Vol 895 ◽  
pp. 319-322
Author(s):  
Lim Kean Pah ◽  
Abdul Halim Shaari ◽  
Chen Soo Kien ◽  
Chin Hui Wei ◽  
Albert Gan ◽  
...  

In this work, we report the effect of sintering temperature (900°C, 1000°C, 1100°C and 1200°C) on the electrical and magnetotransport properties of polycrystalline La0.67Sr0.33MnO3 (LSMO). Single phase of LSMO hexagonal structure (R-3c) accompanied with minor phases was successfully synthesized by co-precipitation method. With increasing sintering temperature, grain growth was promoted and grain connectivity was improved. It was found that an enhancement of resistivity on smaller grain size was due to larger grain surface over volume (grain boundaries effect). The shifting of the metal-insulator transition (TMI) to higher temperature was also responsible for observed changes in physical properties. TMI of 900°C, 1000°C and 1100°C were 232 K, 278 K and 298 K respectively however 1200°C was out of measurement range (higher than 300 K). In summary, CP900 with smaller grain size distribution (~200 nm) displayed the highest resistivity and MR% of -19.2% (at 80 K, 10 kG).


Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1259 ◽  
Author(s):  
Mahboobeh Shahbazi ◽  
Henrietta Cathey ◽  
Natalia Danilova ◽  
Ian Mackinnon

Crystalline Ni2B, Ni3B, and Ni4B3 are synthesized by a single-step method using autogenous pressure from the reaction of NaBH4 and Ni precursors. The effect of reaction temperature, pressure, time, and starting materials on the composition of synthesized products, particle morphologies, and magnetic properties is demonstrated. High yields of Ni2B (>98%) are achieved at 2.3–3.4 MPa and ~670 °C over five hours. Crystalline Ni3B or Ni4B3 form in conjunction with Ni2B at higher temperature or higher autogenous pressure in proportions influenced by the ratios of initial reactants. For the same starting ratios of reactants, a longer reaction time or higher pressure shifts equilibria to lower yields of Ni2B. Using this approach, yields of ~88% Ni4B3 (single phase orthorhombic) and ~72% Ni3B are obtained for conditions 1.9 MPa < Pmax < 4.9 MPa and 670 °C < Tmax < 725 °C. Gas-solid reaction is the dominant transformation mechanism that results in formation of Ni2B at lower temperatures than conventional solid-state methods.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Lucien Heurtier ◽  
Fei Huang ◽  
Tim M.P. Tait

Abstract In the framework where the strong coupling is dynamical, the QCD sector may confine at a much higher temperature than it would in the Standard Model, and the temperature-dependent mass of the QCD axion evolves in a non-trivial way. We find that, depending on the evolution of ΛQCD, the axion field may undergo multiple distinct phases of damping and oscillation leading generically to a suppression of its relic abundance. Such a suppression could therefore open up a wide range of parameter space, resurrecting in particular axion dark-matter models with a large Peccei-Quinn scale fa ≫ 1012 GeV, i.e., with a lighter mass than the standard QCD axion.


2020 ◽  
Vol 90 (5) ◽  
pp. 787
Author(s):  
А.А. Чулкина ◽  
А.И. Ульянов ◽  
В.А. Волков ◽  
А.Л. Ульянов ◽  
А.В. Загайнов

X-ray diffraction, Mossbauer spectroscopy, and magnetic measurements have been used to study the phase formation and doping during mechanical synthesis (MS) and subsequent annealing of the alloy (Fe0.80Cr0.05Ni0.15)75C25. It has been shown that, after MS, the nanocomposite contains mainly two phases – an amorphous phase and cementite A. During annealing, as a result of crystallization of the amorphous phase, cementite B is formed, in which contains more nickel than in the mechanically synthesized cementite A. As the annealing temperature increases, austenite, which is inhomogeneous in nickel content, is formed. The Curie temperature of this austenite reaches 500 °C. It has been determined that cementite in the mechanosynthesized nanocomposite (Fe,Cr,Ni)75C25 has a higher temperature stabilitythan that in a MS composite (Fe,Ni)75C25.


Sign in / Sign up

Export Citation Format

Share Document