Pembuatan Karbon Aktif dari Limbah Plastik PET (Polyethylene terephthalate) Menggunakan Aktivator KOH

METANA ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 61-68
Author(s):  
Syarifuddin Oko ◽  
Mustafa Mustafa ◽  
Andri Kurniawan ◽  
Lintang Norfitria

 Pengunaan plastik setiap hari mengakibatkan terjadinya penumpukan sampah plastik yang dapat mencemari lingkungan dan menjadi salah satu masalah serius yang harus ditangani karena plastik tidak dapat terdegradasi. Plastik merupakan senyawa yang unsur penyusun utamanya adalah karbon dan hidrogen. Sehingga limbah plastik berpotensi sebagai pembuatan karbon aktif dan akan membuat limbah plastik menjadi lebih bermanfaat. Penelitian ini bertujuan untuk mengetahui pengaruh konsentrasi aktivator dan waktu aktivasi terhadap proses aktivasi fisika kimia sehingga menghasilkan produk karbon aktif yang sesuai dengan SNI 06-3730-1995. Plastik PET terlebih dahulu dikarbonasi pada temperatur 480oC selama 2 jam menggunakan furnace hingga membentuk arang. Lalu, direndam dalam aseton selama 24 jam. Setelah itu disaring dan dikeringkan menggunakan oven pada temperatur 110oC selama 3 jam dan dilanjutkan dengan proses aktivasi fisika pada temperatur 750oC selama 2 jam. Karbon yang telah teraktivasi fisika selanjutnya diaktivasi secara kimia dengan menggunakan KOH konsentrasi 1 M, 2 M, 3 M, dan 4M dengan variasi waktu  2 jam dan 4 jam. Diperoleh hasil terbaik yaitu pada karbon aktif dengan konsentrasi KOH 4 M dan waktu aktivasi 2 jam dengan nilai daya serap iod sebesar 980,17 mg/g, kadar abu 0,28%, kadar air 7,55%, dan kadar volatile matter 3,47%. Karbon aktif yang diperoleh telah memenuhi SNI 06-3730-1995.The use of plastic every day results in the accumulation of plastic waste that can pollute the environment and was a serious problem that must be addressed because plastic cannot be degraded. Plastic was a compound whose main constituent elements were carbon and hydrogen. So that plastic waste has the potential to produce activated carbon and will make plastic waste more useful. This study aims to determine the effect of activator concentration and activation time on the physical-chemical activation process so as to produce activated carbon products in accordance with SNI 06-3730-1995. PET plastik was first carbonated at a temperature of 480oC for 2 hours using a furnace to form charcoal. Then, soaked in acetone for 24 hours. After that it was filtered and dried using an oven at a temperature of 110oC for 3 hours and continued with the physical activation process at a temperature of 750oC for 2 hours. The physically activated carbon was then chemically activated using KOH concentrations of 1 M, 2 M, 3 M, and 4 M with time variations of 2 hours and 4 hours. The best results were obtained on activated carbon with a concentration of KOH 4 M and an activation time of 2 hours with an iodine absorption value of 980.17 mg/g, 0.28% ash content, 7.55% water content, and volatile matter levels 3,47%. Activated carbon obtained has complied with SNI 06-3730-1995.

2014 ◽  
Vol 896 ◽  
pp. 179-182 ◽  
Author(s):  
Erman Taer ◽  
Iwantono ◽  
Saidul Tua Manik ◽  
R. Taslim ◽  
D. Dahlan ◽  
...  

Binderless activated carbon monoliths (ACMs) for supercapacitor electrodes were prepared from sugarcane bagasse by two different methods of physical and combination of physical-chemical activation process. The CO2 gas was used as physical activation agent and 0.3 M KOH was chosen as chemical activation agent. The ACMs were tested as electrodes in two-electrode systems of the coin tape cell supercapacitor that consists of stainless steel as current collectors and 1 M H2SO4 as an electrolyte. The improving of resistive, capacitive and energy properties of combination of physical-chemical ACMs electrodes were shown by an impedance spectroscopy, a cyclic voltammetry and a galvanostatic charge-discharge method. The improving of resistive, capacitive and energy properties as high as 1 to 0.6 Ω, 146 to 178 F g-1, 3.83 to 4.72 W h kg-1, respectively. The X-ray diffraction analysis and field emission scanning electron microscope were performed to characterize the crystallite and morphology characteristics. The results showed that the combination of physical-chemical activation process have given a good improving in performance of the bagasse based ACMs electrodes in supercapacitor application.


2015 ◽  
Vol 1107 ◽  
pp. 347-352 ◽  
Author(s):  
Collin Glen Joseph ◽  
Duduku Krishniah ◽  
Yun Hin Taufiq-Yap ◽  
Masnah Massuanna ◽  
Jessica William

Abstract. Waste tires, which are an abundant waste product of the automobile industry, were used to prepare activated carbon by means of physical and chemical activation. A two-stage process was used, with a semi-carbonization stage as the first stage, followed by an activation stage as the second stage.All experiments were conducted in a laboratory-scale muffle furnace under static conditions in a self-generated atmosphere. During this process, the effects of the parametric variables of semi-carbonization time (for the physical activation process), activation time and temperature and impregnation ratios (for the chemical activation process) on the percentage yield were studied and compared. Varying these parametric variables yielded interesting results, which in turn affected the adsorption process of 2,4-DCP, which was the simulated pollutant in aqueous form. The optimized percentage yields of activated carbon that were obtained were 41.55% and 44.88% ofthe physical and chemical activation treatment processes respectively.Keywords: Physical activation, chemical activation, waste rubber tires, 2,4-dichlorophenol, activated carbon.


Author(s):  
Muhammad S. Muzarpar ◽  
A. M. Leman

Activated carbon (AC) was recognized by many researchers as useful substance in adsorption of impurities. Several processes involved in the production of AC which were carbonization, crushing, and activation process. Carbonization of carbon required high temperature up to 900oC. Then the carbon will be crush to a desired size for activation process. Activation of carbon can be either chemical activation, physical activation or combination of chemical and physical activation which called physiochemical activation. The mechanism adsorption of AC commonly due to its micropore present in the carbon or the weak vander waals forces which can attract the impurities. Activated carbon have multiple function in human daily life. This study will be discuss the function of AC in the production face mask, water filtration and air filtration.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2047 ◽  
Author(s):  
Katarzyna Januszewicz ◽  
Paweł Kazimierski ◽  
Maciej Klein ◽  
Dariusz Kardaś ◽  
Justyna Łuczak

Pyrolysis of straw pellets and wood strips was performed in a fixed bed reactor. The chars, solid products of thermal degradation, were used as potential materials for activated carbon production. Chemical and physical activation processes were used to compare properties of the products. The chemical activation agent KOH was chosen and the physical activation was conducted with steam and carbon dioxide as oxidising gases. The effect of the activation process on the surface area, pore volume, structure and composition of the biochar was examined. The samples with the highest surface area (1349.6 and 1194.4 m2/g for straw and wood activated carbons, respectively) were obtained when the chemical activation with KOH solution was applied. The sample with the highest surface area was used as an adsorbent for model wastewater contamination removal.


2020 ◽  
Vol 15 (2) ◽  
pp. 79-89
Author(s):  
Sriatun Sriatun ◽  
Shabrina Herawati ◽  
Icha Aisyah

The starting material for activated carbon was biomass from teak woodcutting, which consists of 47.5% cellulose, 14.4% hemicellulose, and 29.9% lignin. The surface area and iodine number of activated carbons are the factors determining the adsorption ability. This study aims to determine the effect of the activator type on activated carbon characters and test the absorption ability for waste cooking oil. The synthesis stages include carbonization, chemical activation, and then physics activation. The activation process consists of two steps. Firstly, the chemical activation via adding H2SO4, and H3PO4 at room temperature for 24 hours, the second, physical activation by heating at various temperatures of 300, 400, and 500 °C for two hours. The characterizations of activated carbon include water content, ash content, iodine number, functional groups, and surface area. Furthermore, the activated carbon was used as an adsorbent for waste cooking oil for 60 minutes at 100 °C with a stirring of 500 rpm. The results were analyzed using UV-Vis spectrophotometry at a maximum wavelength of 403 nm. The iodine numbers of activated carbon ranged 481.1-1211.4 mg/g and 494.8-1204 mg/g for H3PO4 and H2SO4, respectively.Activated carbon with H3PO4 of 15% and an activation temperature of 400 °C has the highest surface area of 445.30 m2/g.  The H2SO4 dan H3PO4 activators can be used to improve the quality of activated carbon in absorbing dyes in waste cooking oil, where the optimum concentration is 10-15% (v/v). The H3PO4 activator tends to produce a higher bleaching percentage than H2SO4. 


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
O. A. Ekpete ◽  
A. C. Marcus ◽  
V. Osi

Carbonization of carbon obtained from plantain (Musa paradisiaca) stem was achieved at a temperature of 400°C for one hour. The carbonized carbon was divided into two parts to be activated separately. The activated carbon CPPAC (carbonized plantain phosphoric acid activated carbon) and CPZAC (carbonized plantain zinc chloride activated carbon) were produced via the chemical activation process using H3PO4 and ZnCl2. Characterization of pH, bulk density, moisture content, ash content, volatile matter, iodine number, and oxygen functional group was conducted. When comparing the surface properties of both CPPAC and CPZAC with the untreated plantain carbon (UPC), it was observed that there existed significant differences in all properties with the exemption of carboxylic group for CPPAC and phenolic group for both CPPAC and CPZAC, thus signifying that a chemical transformation did occur. When comparing the results obtained from CPPAC to that of CPZAC, CPPAC was more preferable for adsorption due to its low bulk density, low ash content, and high iodine value, signifying thus that the activating agents both reacted differently with the plantain stem.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 592 ◽  
Author(s):  
Chao Ge ◽  
Dandan Lian ◽  
Shaopeng Cui ◽  
Jie Gao ◽  
Jianjun Lu

Low-cost activated carbons were prepared from waste polyurethane foam by physical activation with CO2 for the first time and chemical activation with Ca(OH)2, NaOH, or KOH. The activation conditions were optimized to produce microporous carbons with high CO2 adsorption capacity and CO2/N2 selectivity. The sample prepared by physical activation showed CO2/N2 selectivity of up to 24, much higher than that of chemical activation. This is mainly due to the narrower microporosity and the rich N content produced during the physical activation process. However, physical activation samples showed inferior textural properties compared to chemical activation samples and led to a lower CO2 uptake of 3.37 mmol·g−1 at 273 K. Porous carbons obtained by chemical activation showed a high CO2 uptake of 5.85 mmol·g−1 at 273 K, comparable to the optimum activated carbon materials prepared from other wastes. This is mainly attributed to large volumes of ultra-micropores (<1 nm) up to 0.212 cm3·g−1 and a high surface area of 1360 m2·g−1. Furthermore, in consideration of the presence of fewer contaminants, lower weight losses of physical activation samples, and the excellent recyclability of both physical- and chemical-activated samples, the waste polyurethane foam-based carbon materials exhibited potential application prospects in CO2 capture.


2015 ◽  
Vol 15 (1) ◽  
pp. 22 ◽  
Author(s):  
A. Nur Hidayah ◽  
M.A. Umi Fazara ◽  
Z. Nor Fauziah ◽  
M.K. Aroua

The properties of the activated carbon from Sea Mango (Cerbera Odollam) prepared from chemical and physical activation was studied. The sample was impregnated with phosphoric acid (H3PO4) at the impregnation ratio of precursor to activant as 1:2 and followed by thermal activation at 500 °C with different flowing gas i.e. nitrogen (N2), carbon dioxide (CO2), steam and at the absent of any gases for duration of 2 hours. The sample experienced two different steps of preparation which were Method 1 and Method 2. In Method 1, the precursor will be thermally heated after the chemical activation process, and the samples were denoted as RIHM1-N, RIHM1-CO2, RIHM1-S and RIHM1-A which utilize either N2, CO2, steam and absent of any gases, respectively. Meanwhile in Method 2, the carbonization process with N2 flow at 200 °C was done prior to chemical and thermal activation. This type of treatment method was denoted as RCIHM2-N, RCIHM2-CO2 RCIHM2-S and RCIHM2-A, which use the same flowing gases as described previously. The surface area of the activated carbon was determined using standard method (ASTM) of iodine test. A higher iodine number reading was given by the sample prepared via Method 2 i.e. 1021.74 mg/g, 1069.98 mg/g 902.40 mg/g and 1040.58 mg/g for sample RCIHM2-N, RCIHM2-CO2, RCIHM2-S and RCIHM2-A, respectively. For sample prepared via Method 1, the iodine number measurement for sample RIHM1-N, RIHM1-CO2, RIHM1-S and RIHM1-A were 896.480 mg/g, 810.900 mg/g, 973.70 mg/g and 856.217mg/g, respectively.


2021 ◽  
Vol 2117 (1) ◽  
pp. 012040
Author(s):  
A Budianto ◽  
E Kusdarini ◽  
W Mangkurat ◽  
E Nurdiana ◽  
N P Asri

Abstract Young Coconut products have many benefits for society as for drinks and medicine, and it produces young Coconut shells and coir waste. The contents of cellulose and carbon elements are interesting to be utilized to be activated carbon. This research aimed to know the activator concentration of hydroxide potassium chemical and heating physical with microwave electrical power to produce activated carbon products. This research was conducted in laboratory experiments with chemical and physical activation methods, measuring proximate and iodine product numbers. The result showed that activated carbon from young Coconuts shells and coir with activation process used chemical activation and produced activated carbon products that met SNI standard number 06-3730-1995. Iodine number of activated carbons was in the range of 1776.60 mg/g – 2220.75 mg/g, iodine number as more than 23.5% of SNI Standard.


2020 ◽  
Vol 5 (3) ◽  
pp. 221
Author(s):  
Muhammad Azam ◽  
Muhammad Anas ◽  
Erniwati Erniwati

This study aims to determine the effect of variation of activation temperature of activated carbon from sugar palm bunches of chemically activatied with the activation agent of potassium silicate (K2SiO3) on the adsorption capacity of iodine and methylene blue. Activated carbon from bunches of sugar palmacquired in four steps: preparationsteps, carbonizationstepsusing the pyrolysis reactor with temperature of 300 oC - 400 oC for 8 hours and chemical activation using of potassium silicate (K2SiO3) activator in weight ratio of 2: 1 and physical activation using the electric furnace for 30 minutes with temperature variation of600 oC, 650 oC, 700 oC, 750 oC and 800 oC. The iodine and methyleneblue adsorption testedby Titrimetric method and Spectrophotometry methodrespectively. The results of the adsorption of iodine and methylene blue activated carbon from sugar palm bunches increased from 240.55 mg/g and 63.14 mg/g at a temperature of 600 oC to achieve the highest adsorption capacity of 325.80 mg/g and 73.59 mg/g at temperature of 700 oC and decreased by 257.54 mg/g and 52.03 mg/g at a temperature of 800 oCrespectively.However, it does not meet to Indonesia standard (Standard Nasional Indonesia/SNI), which is 750 mg/g and 120 mg/g respectively.


Sign in / Sign up

Export Citation Format

Share Document