The Effect of Milling Time and Sintering Temperature on Synthesis of PbTiO3 by Mechanical Alloying

2015 ◽  
Vol 1123 ◽  
pp. 109-113
Author(s):  
Rindang Fajarin ◽  
Hariyati Purwaningsih ◽  
Febri Nugroho

PbTiO3is one of electroceramic materials which can be applied for electronics and microelectronics due to their dielectric, pyroelectric, and piezoelectric properties. The members of PbTiO3-based ferroelectrics are widely used in multilayer, actuator and sensor capacitor. At room temperature, PbTiO3has a tetragonal perovskite structure. In this research, PbTiO3particles are synthesized by mechanical alloying method with variation of milling time and sintering temperature. The milling time variation is taken for 10, 20 and 30 hours. Sintering temperature variation is performed at 850, 900 and 1000°C. The powders used in the milling process are PbO and TiO2powders. X-Ray Diffraction (XRD) and Scanning Electron Microscopy–Electron Difraction X-ray (SEM-EDX) are performed to analyze the formation of PbTiO3phase. It is found that the synthesized powders contain 100% PbTiO3phase for all sintering temperatures. The PbTiO3particles have agglomeration shape with a broad particle size. The electrical properties of PbTiO3are measured using electrical test device. Electricity test analysis shows that the synthesized PbTiO3behaves as semiconductor-like.

2012 ◽  
Vol 329 ◽  
pp. 19-28 ◽  
Author(s):  
M. Gherib ◽  
A. Otmani ◽  
A. Djekoun ◽  
A. Bouasla ◽  
M. Poulain ◽  
...  

Nanostructured Powders of Ni-20wt%Al and Ni-50wt%Al Were Prepared, by Mechanical Alloying under an Argon Atmosphere, from Elemental Ni and Al Powders Using a Planetary Ball Mill (type Fritsch P7) for Different Times (0.5-24h).). Microstructural and Structural Features of the Final Products Were Characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). the Results of the XRD Shows the Formation of the B2 (Ni Al) Phase after 2 Hours of Milling for both Systems. Also Detected Was the Ni3al Phase in Ni80al20after 4 Hours. Crystallite Size Refinement of the Final Product Occurred down to Nanometer Scales when the Milling Time Increased, and Attained 17 Nm in the Ni50al50System and 20 Nm in the other System, at 24 Hours. this Decrease in Crystallite Size Is Accompanied by an Increase in the Interval Level Strain. the Kinetics of Al Dissolution during the Milling Process of Ni50al50System Can Be Described by Two Regimes, Characterised by Different Values of Avrami Parameters which Are Calculated by Using the Johnson–Mehl–Avrami Formalism.


Author(s):  
Mahmoud Chemingui ◽  
Chahida Mnasri ◽  
Christelle Nivot ◽  
Arnaud Tricoteaux ◽  
Yannick Lorgouilloux ◽  
...  

Abstract A new nanocrystalline Fe71B23Nb6 alloy powder was prepared by mechanical alloying. The phase transformation and morphological and microstructural properties of the as-prepared alloy were investigated by scanning electron microscopy, laser granulometry, and X-ray diffraction with respect to the milling time (0- 200 h). During the milling process, it was observed that the dissolution of Nb and B atoms into the Fe matrix formed solid solutions of Fe (Nb), Fe (B), Fe23B6, Fe2B, and Fe (Nb, B). Moreover, the insertion of B atoms into the Nb network generated the Nb (B) phase. Furthermore, the minimum crystallite size was measured as approximately 1 nanometer. In addition, the dislocation density gradually increased with the extension of the milling time, and the crystallization of the partially amorphous phase occurred after 200 h of milling.


2014 ◽  
Vol 896 ◽  
pp. 267-271 ◽  
Author(s):  
Ika Kartika ◽  
Yudi Nugraha Thaha ◽  
Franciska Pramuji Lestari ◽  
Bambang Sriyono

Mg-Ca-Zn alloy metallic foam has been recently recognized as biodegradable implant. In this present work, the characteristics of Mg-Ca-Zn alloy metallic foam which made by foaming of powder compact based on Mg-Zn-CaH2system were investigated. Mg-Zn-CaH2powder with nominal compositions of 97.5 weight % Mg, 2 weight % Zn, 0.5 weight % CaH2and 96.8 weight % Mg, 2 weight % Zn, 1.2 weight % CaH2were prepared by dry milling process for 6 h and characterized by differential thermal analysis (DTA). The prepared powders are pressed for 6.5MPa at room temperature and sintered for 2 h at various temperatures of 350 °C and 600 °C. The alloys were analyzed by x-ray diffraction and scanning electron microscope (SEM). The results indicated that addition of calcium hydride as blowing agent affects phase formation of Mg2Ca and Mg2Zn3, sintering temperature and grain refining of Mg-Ca-Zn alloy.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


1988 ◽  
Vol 133 ◽  
Author(s):  
K. S. Kumar ◽  
S. K. Mannan

ABSTRACTThe mechanical alloying behavior of elemental powders in the Nb-Si, Ta-Si, and Nb-Ta-Si systems was examined via X-ray diffraction. The line compounds NbSi2 and TaSi2 form as crystalline compounds rather than amorphous products, but Nb5Si3 and Ta5Si3, although chemically analogous, respond very differently to mechanical milling. The Ta5Si3 composition goes directly from elemental powders to an amorphous product, whereas Nb5Si3 forms as a crystalline compound. The Nb5Si3 compound consists of both the tetragonal room-temperature α phase (c/a = 1.8) and the tetragonal high-temperature β phase (c/a = 0.5). Substituting increasing amounts of Ta for Nb in Nb5Si3 initially stabilizes the α-Nb5Si3 structure preferentially, and subsequently inhibits the formation of a crystalline compound.


2016 ◽  
Vol 1133 ◽  
pp. 75-79 ◽  
Author(s):  
Emee Marina Salleh ◽  
Sivakumar Ramakrishnan ◽  
Zuhailawati Hussain

The aim of this work was to study the effect of milling time on binary magnesium-titanium (Mg-Ti) alloy synthesized by mechanical alloying. A powder mixture of Mg and Ti with the composition of Mg-15wt%Ti was milled in a planetary mill under argon atmosphere using a stainless steel container and balls. Milling process was carried out at 400 rpm for various milling time of 2, 5, 10, 15 and 30 hours. 3% n-heptane solution was added prior to milling process to avoid excessive cold welding of the powder. Then, as-milled powder was compacted under 400 MPa and sintered in a tube furnace at 500 °C in argon flow. The refinement analysis of the x-ray diffraction patterns shows the presence of Mg-Ti solid solution when Mg-Ti powder was mechanically milled for 15 hours and further. Enhancements of Mg-Ti phase formation with a reduction in Mg crystallite size were observed with the increase in milling time. A prolonged milling time has increased the density and hardness of the sintered Mg-Ti alloy.


2011 ◽  
Vol 479 ◽  
pp. 54-61 ◽  
Author(s):  
Fei Wang ◽  
Ya Ping Wang

Microstructure evolution of high energy milled Al-50wt%Si alloy during heat treatment at different temperature was studied. Scanning electron microscope (SEM) and X-ray diffraction (XRD) results show that the size of the alloy powders decreased with increasing milling time. The observable coarsening of Si particles was not seen below 730°C in the high energy milled alloy, whereas, for the alloy prepared by mixed Al and Si powders, the grain growth occurred at 660°C. The activation energy for the grain growth of Si particles in the high energy milled alloy was determined as about 244 kJ/mol by the differential scanning calorimetry (DSC) data analysis. The size of Si particles in the hot pressed Al-50wt%Si alloy prepared by high energy milled powders was 5-30 m at 700°C, which was significantly reduced compared to that of the original Si powders. Thermal diffusivity of the hot pressed Al-50wt%Si alloy was 55 mm2/s at room temperature which was obtained by laser method.


2012 ◽  
Vol 496 ◽  
pp. 379-382
Author(s):  
Rui Song Yang ◽  
Ming Tian Li ◽  
Chun Hai Liu ◽  
Xue Jun Cui ◽  
Yong Zhong Jin

The Cu0.81Ni0.19 has been synthesized directly from elemental powder of nickel and copper by mechanical alloying. The alloyed Cu0.81Ni0.19 alloy powders are prepared by milling of 8h. The grain size calculated by Scherrer equation of the NiCu alloy decreased with the increasing of milling time. The end-product was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM)


2020 ◽  
Vol 1002 ◽  
pp. 12-20
Author(s):  
Tarik T. Issa ◽  
Sadeer M. Majeed ◽  
Duha S. Ahmed

Elements of high purity (99.999) ,were used to prepare the alloy , Bi ,Sn,Zn and Cu .Two types alloy Bi – Sn – Zn and Bi – Sn – Cu were prepared by mechanical alloying technique (MA) .Annealing at 100 °Cfor 8 hours was applied for the resulting alloys . X-ray diffraction and differential scanning colorimetriy were tested for the two types of alloy before and after annealing. The best results was noticed in the ternary alloythat prepared at 4 hours milling time ,and annelid at 100 °C, for 8 hours ,under static air.


2014 ◽  
Vol 906 ◽  
pp. 18-24 ◽  
Author(s):  
Bao Lin Zhang ◽  
Bin Bin Zhang ◽  
Ning Ning Wang ◽  
Jing Ming Fei

The effect of milling time and sintering process on the dielectric properties of BaTiO3-based X9R ceramics was investigated. The characterization of the raw powders and the sintered ceramic was carried out by X-ray diffraction and scanning electron microscopy. The particle size distribution of the mixed powders was examined by Laser Particle Size Analyzer. The results shown that with the milling time extended, the Cruie Peak was depressed, or even disappeared. Moreover, with the rise of sintering temperature, the dielectric constant of the ceramics increased and the dielectric loss decreased gradually. Eventually, by milling for 11h and sintering at 1090°Cfor 2h, good dielectric properties were obtained, which were ε25°C≥ 2526, εr/εr25°C≤± 12% (–55~200°C), tanδ≤1.12% (25°C).


Sign in / Sign up

Export Citation Format

Share Document