Thermal Properties and Mechanical Performance of Unsaturated Polyester/Phenolic Blends Reinforced by Kenaf Fiber

2015 ◽  
Vol 1134 ◽  
pp. 61-65 ◽  
Author(s):  
Marliana Mohd Mahadar ◽  
Azman Hassan ◽  
Nor Yuziah Mohd Yunus ◽  
H.P.S. Abdul Khalil ◽  
Mohamad Haafiz Mohamad Kassim

In this study, unsaturated polyester resin (UP) is blended with resole type phenolic resin (PF) to develop a material with good flame retardancy. The UP/PF resin blends are expected to show good compatibility when compounded with natural fibers which in this research is kenaf fiber. The thermal properties were investigated by thermogravimetric analysis (TGA). The char yields of the UP/PF blends reinforced kenaf composite increased with PF content. The degradation temperature of the composite at 50% weight loss rose to 410.13°C as the PF content was increased to 40%. The result shows with additional of PF to UP resin enhance the thermal stability of the composite. Meanwhile the mechanical performance of UP/PF kenaf composite were evaluated and compared with neat UP and PF reinforced with kenaf fiber using tensile and impact testing. The mechanical properties of all resin blends at different mixing proportions slightly decrease by increasing the phenolic content but shown an improvement as compared to the PF kenaf fiber composite. The fracture surface morphology of the tensile testing samples of the composites was performed by scanning electron microscopy (SEM).

Author(s):  
E. Dilara Koçak

Producing composites from natural fibers is known to be common. These fibers benefit from their mechanical performances, low density, and their biodegradability. However, it is necessary for the fibers to form adhesion in the matrix. Therefore, it is necessary to apply a chemical process to the surface of the fibers. In this study, four different processes in conventional and ultrasonic energies were applied on luffa cylindrical fibers. At the end of the application, a composite structure was formed on the fibers that were obtained by using unsaturated polyester resin. The changes in the characteristics of the composite structure were recorded by mechanical tests, Fourier transform infrared, X-ray diffractometer, and their morphological characteristics by means of scanning electron microscopy. Considering all the results, formic acid and acetic acid process results were found to adequately modify the fiber surfaces.


2017 ◽  
Vol 52 (2) ◽  
pp. 147-152
Author(s):  
R Sultana ◽  
R Akter ◽  
MR Qadir ◽  
MA Gafur ◽  
MZ Alam

Porcelain reinforced polyester resin composites (PPCs) having different compositions have been prepared by compression molding. Thermal properties of PPCs were studied by means of TG-DTA and TMA. The influence of porcelain content on thermal properties of PPCs was studied in detail. Thermal conductivities of PPCs decreased from 0.00068 cal/cm sec°C to 0.00030 cal/cm sec°C by the addition of porcelain from 10 to 60%. The results of this study reveal their good thermal stabilities. The 50% degradation temperature of pure Polyester resin was 401.5°C, but that of the PPC-1, PPC-2 and PPC-4 were 406.3°C, 407.8°C, and 417.3°C respectively. The morphology of the composites was studied with scanning electron microscopy (SEM).Bangladesh J. Sci. Ind. Res. 52(2), 147-152, 2017


2013 ◽  
Vol 748 ◽  
pp. 201-205
Author(s):  
Abd Aziz Noor Zuhaira ◽  
Rahmah Mohamed

In this research, rice husk and kenaf fiber were compounded with calcium carbonate (CaCO3)/high density polyethylene (HDPE) composite.Different loadings of up to 30 parts of 50 mesh sizes of rice husk particulate and kenaf fiber were compounded using twin-screw extruder with fixed 30 parts of CaCO3 fillerto produce hybrid composites of rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE.Compounded hybrid composites were prepared and tested for thermal properties. The thermal stability of the components was examined by thermogravimetricanalysis (TGA) and differential scanning calorimetric (DSC). The DSC results showed a slightly changes in melting temperature (Tm), crystallization temperature (Tc) and the degree of crystallinity (Xc) with addition of natural fiber. TGA indicates thermal stability of hybrid composite filled with kenaf or rice husk is better than unfilledCaCO3/HDPE composite.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Francisco Carrión ◽  
Laura Montalbán ◽  
Julia I. Real ◽  
Teresa Real

Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.


Author(s):  
Mohamed Farsane ◽  
Abdellah Anouar ◽  
Souad Chah ◽  
Miloudi Bouzziri

In this study, the properties of unsaturated polyester resin were studied in the presence of recycled ceramic waste particles. Herein, composites were created that contained 28.5-50 wt% porcelain particles (particle size <180 µm). High filler contents increased the gel time and decreased the exotherm temperature of unsaturated polyester resin during curing. The obtained results showed that physical parameters, such as the resin density and porosity, increased as the filler content increased. In addition, the X-ray diffraction results indicated that the produced samples were a combination of ceramic waste particles and unsaturated polyester resin, resulting in semi crystalline structure. The results showed that the maximum water absorption at 40°C increased from 0.97 to 1.5% as the filler content increased from 28.5 to 50 wt%; in this process, the materials experienced a color change but did not lose mechanical performance. Finally, the samples were characterized by thermogravimetric analysis (TGA) to study the effect of porcelain powder on the thermal degradation of the resin. The TGA scans were analyzed with the Friedman method. The results indicated that the samples with porcelain powder exhibited substantially better thermal stability than unsaturated polyester resin.


2021 ◽  
Vol 58 (3) ◽  
pp. 174-185
Author(s):  
Mohamed Farsane ◽  
Khalid Saadouni ◽  
Soufia Lhasnaoui ◽  
Aziz Akhiate ◽  
Abdellah Anouar ◽  
...  

In this study, the properties of unsaturated polyester resin were studied in the presence of recycled ceramic waste particles. Herein, composites were created that contained 28.5-50 wt% porcelain particles (particle size [180 �m). High filler contents increased the gel time and decreased the exotherm temperature of unsaturated polyester resin during curing. The obtained results showed that physical parameters, such as the resin density and porosity, increased as the filler content increased. In addition, the X-ray diffraction results indicated that the produced samples were a combination of ceramic waste particles and unsaturated polyester resin, resulting in semi crystalline structure. The results showed that the maximum water absorption at 40�C increased from 0.97 to 1.5% as the filler content increased from 28.5 to 50 wt%; in this process, the materials experienced a color change but did not lose mechanical performance. Finally, the samples were characterized by thermogravimetric analysis (TGA) to study the effect of porcelain powder on the thermal degradation of the resin. The TGA scans were analyzed with the Friedman method. The results indicated that the samples with porcelain powder exhibited substantially better thermal stability than unsaturated polyester resin.


Sign in / Sign up

Export Citation Format

Share Document