Research of Stress Transfer Area and its Length Prediction of Single-Lap Adhesive Joint

2010 ◽  
Vol 129-131 ◽  
pp. 680-685
Author(s):  
Wei Ping Ouyang ◽  
Jian Ping Lin ◽  
Zhi Guo Lu

obtaining the law of stress and strain distribution of loaded adhesive joint has significant implication for joint design and its strength prediction. The dynamic FEM model of uniaxial tensile adhesive joint was established, in which strain fracture criteria is adopted. It can be observed from the FEM results that: lapped area of the joint bears shear stress primarily, the adherend areas located away from the lapped area bear steady tensile stress mainly and the adherend areas adjacent to lapped area endure tensile and shear stress simultaneously. Based on stress distribution characters, the joint was divided into three areas (lapped area, stress transfer area and uniform stress area) and an analytical model predicting the length of stress transfer areas was developed. DIC technology was applied to measure the whole field strain of the joint. It can be seen from the DIC results that the joints area division and the model of predicting the length of stress transfer length are feasible.

2009 ◽  
Vol 69-70 ◽  
pp. 172-176 ◽  
Author(s):  
Yu Mei Bao ◽  
Guo Zhong Chai ◽  
Sheng Ting Gu

Ceramics are increasingly used in many advanced science and technology due to their excellent properties. Grinding is the most efficient and effective technique to achieve high dimensional accuracy and surface integrity of ground ceramic workpiece at optimum cost efficiency. The indentation/ scratch approaches are widely used in studying the grinding process. In this paper, the grinding technology and grinding induced damage of advanced ceramics are briefly reviewed. Based on MSC.Marc software, a FEM model for the Vicker’s indentation/scratch is established to simulate the abrasive grinding process, the stress and strain distribution in the advanced ceramics under a Vicker’s indenter are presented and discussed. The related elastic modulus is obtained by the nanoindentation tests.


Author(s):  
Nikolay A. Makhutov ◽  
◽  
Dmitry A. Neganov ◽  
Eugeny P. Studenov ◽  
◽  
...  

In the factory, pipes for trunk oil and oil product pipelines are obtained by molding and welding. To ensure a cylindrical shape and reduce technological residual stresses, expansion technology is used. Pipe expansion causes a significant change in the values of residual deformations and stresses. The article presents both the calculation results and graphs regarding stress and strain distribution during bending of the stock and their redistribution after expansion. Based on the calculation results, the final total values of residual stresses and residual deformations caused by bending and expansion were stated to be important components of the stress-strain state observed in pipelines being operated under cyclic loading, as well as those used in assessing how degradation affects the ductility of the pipe material. These factors were concluded as being reasonably taken into account when performing verification calculations regarding long-running pipelines if, based on their diagnostics and analysis, their state does not meet modern strength requirements.


1993 ◽  
Vol 2 (5) ◽  
pp. 096369359300200 ◽  
Author(s):  
H.D. Wagner ◽  
S. Ling

An energy balance approach is proposed for the single fibre composite (or fragmentation) test, by which the degree of fibre-matrix bonding is quantified by means of the interfacial energy, rather than the interfacial shear strength, as a function of the fibre geometrical and mechanical characteristics, the stress transfer length, and the debonding length. The validity of the approach is discussed using E-glass fibres embedded in epoxy, both in the dry state and in the presence of hot distilled water.


2021 ◽  
pp. 105678952199872
Author(s):  
Bilal Ahmed ◽  
George Z Voyiadjis ◽  
Taehyo Park

In this work, a new damage model for concrete is proposed with an extension of the stress decomposition (limited to biaxial cases), to capture shear damage due to the opposite signed principal stresses. To extract the pure shear stress, the assumption is made that one component of the shear stress is a minimum absolute of the two principal stresses. The opposite signed principal stresses are decomposed into shear stress and uniaxial tensile/compressive stress. A local model is implemented in Abaqus UMAT and it is further extended to a non-local model by utilization of the gradient theory. The concept of three length scales (tension, compression, and shear) is kept the same as the recently proposed nonlocal damage model by the authors. The nonlocal model is implemented in the Abaqus UEL-UMAT subroutine with an eight-node quadrilateral user-defined element, having five degrees of freedom at corner nodes (displacement in X/Y direction and tensile/compressive and shear nonlocal equivalent strain) and two degrees of freedom at internal nodes. Some examples of a local model including uniaxial and biaxial loading are addressed. Also, five examples of mixed crack mode and mode-I cracking are presented to comprehensively show the performance of this model.


2013 ◽  
Vol 325-326 ◽  
pp. 1314-1317
Author(s):  
Cong Sheng Chen ◽  
Ping He ◽  
Cheng Yong Wang ◽  
Xue Hui Chen ◽  
Lei Huang ◽  
...  

Three-dimensional integrated modeling method and the numerical simulation of elastoplastic finite element are adopted in the paper. The mechanical response of the five holes anchorage is analyzed in certain prestressed state. The stress and strain distribution information of the anchor ring, clip and steel strand is obtained respectively, and the structure safety is discussed by investigating on the maximum stress and strain.


2012 ◽  
Vol 510 ◽  
pp. 667-672
Author(s):  
Jia Lin Zhou ◽  
Chen Gang Pan ◽  
Xiao Yong Zhang

This article established 3D FE model of dual-radius arc finishing groove and tangent expansion angle finishing groove using ANSYS / LS-DYNA software for Wuhan Iron and Steel plant Ф16 hot continuous bar, and analyzed metal flow pattern, stress and strain distribution of two types finishing grooves. The results show that surface stress and strain distribution of dual-radius arc finishing groove have better uniform than them of tangent expansion angle finishing groove, and dual-radius arc finishing groove ensures the stability of the rolled piece in finishing groove, improve the dimensional accuracy and surface quality of rolled finishing product.


2011 ◽  
Vol 474-476 ◽  
pp. 131-136 ◽  
Author(s):  
Ming Liang Yang ◽  
Ge Ning Xu ◽  
Zheng Yan Chang

For the sake of working safely and stable, large-scale shipbuilding gantry crane was designed based on the principle of metal structure:3S,Strength,Stiffness,Stability. The detailed finite element analytical computation was successfully carried out on this structure, the stress and strain distribution of this structure were obtained under various actual operations. On the basis of it, the structural improvement was carried out, the result of design indicated that the stress was evident and the weight was lightened. This laid a foundation for the structure design of large-scale shipbuilding gantry crane.


Author(s):  
Seyed Ali Heydarshahy ◽  
Shivakumar Karekal

Polycrystalline Diamond Compact (PDC) cutters have been popularly used in recent times due to their resistance against mechanical and thermal wear. This paper was focused on interface geometries between the substrate and the diamond table. Various types of interfaces were designed, to investigate how different interface geometries influence distribution of stress and strain under shear loading. The interface geometries examined in this paper included castle interface, dent interface, honeycomb interface and chase interface. Parallel to the interface, shear loading was applied to the top of diamond table to mimic the shear loading component from the rock cutting. To apply the shear loading, two locations were considered for each of the geometries. These locations differed depending on the interface features. Stress and strain distribution and values across different interface geometries were analysed with the aid of 3D Finite Element Method (FEM). The numerical simulations indicated that stress and strain magnitudes and distribution patterns varied in relation to different geometries. Some substrates showed relatively lower plastic strain representing higher durability of the geometries. Concentration of stress and strain distribution showed the areas where one could expect weakness. It also implies that rotating the PDC cutter assemblies around their cylindrical axis helps avoiding fatigue of interface elements in regions of high stress concentration; and thus, preventing premature failure of interface elements.


Sign in / Sign up

Export Citation Format

Share Document