Effect of Abrasive on the Machining Performance the EMR-Effect-Based Tiny-Grinding Wheel

2010 ◽  
Vol 135 ◽  
pp. 24-29 ◽  
Author(s):  
Jia Bin Lu ◽  
Qiu Sheng Yan ◽  
Hong Tian ◽  
Wei Qiang Gao

Based on the electro-magneto-rheological (EMR) effect, the Fe3O4-based EMR fluid dispersed with micron-sized finishing abrasives is used as a polishing fluid to form a dynamical tiny-grinding wheel under an electro-magnetically coupled field. Using this EMR-effect-based tiny-grinding wheel, experiments were conducted to investigate the effect of the grain size, content and material of abrasive on material removal effect of normal glass. Results indicate that the abrasive can change the chain-like structure of the EMR-effect-based tiny-grinding wheel and influence the material removal ability of the tiny-grinding wheel remarkably. The material removal amount increases with the increase of the content of diamond abrasive in the EMR fluid, and grows slowly when the proportion of diamond abrasive exceeds to 6%. While the grain size of abrasive increases, the material removal amount increases at the beginning and decreases afterwards. The effect of abrasive on material removal depends on the hardness of abrasive, the greater the abrasive hardness, the higher the material removal efficiency. The machined area has a close relationship with both the density and grain size of abrasive.

2009 ◽  
Vol 407-408 ◽  
pp. 363-367 ◽  
Author(s):  
Yi Liu ◽  
Qiu Sheng Yan ◽  
Jia Bin Lu ◽  
Wei Qiang Gao ◽  
Yong Yang

Using the tiny-grinding wheel based on the synergistic effect of the electro-magneto- rheological (EMR) fluid, a novel method is presented to machine the three-dimensional (3D) microstructure of hard-brittle materials. Machining experiments of micro-groove were conducted to reveal the machining performances of the tiny-grinding wheel. Experimental results confirm the effectiveness and feasibility of the micro machining technique with the EMR effect-based tiny-grinding wheel. The shape of machined micro groove is found to be an inverted trapezoid, and the material removal mode of normal glass with the micro machining method is the plastic-removal mode. With the increase of the rotation speed of the tool, the material removal rate, width and depth of micro grooves increased first and decreased afterwards. The maximum removal rate, width and depth of micro groove occur at different speeds of the tool.


Author(s):  
Sundar Marimuthu ◽  
Bethan Smith

This manuscript discusses the experimental results on 300 W picosecond laser machining of aerospace-grade nickel superalloy. The effect of the laser’s energetic and beam scanning parameters on the machining performance has been studied in detail. The machining performance has been investigated in terms of surface roughness, sub-surface thermal damage, and material removal rate. At optimal process conditions, a picosecond laser with an average power output of 300 W can be used to achieve a material removal rate (MRR) of ∼140 mm3/min, with thermal damage less than 20 µm. Shorter laser pulse widths increase the material removal rate and reduce the resultant surface roughness. High scanning speeds improve the picosecond laser machining performance. Edge wall taper of ∼10° was observed over all the picosecond laser machined slots. The investigation demonstrates that high-power picosecond lasers can be used for the macro-machining of industrial components at an acceptable speed and quality.


2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


2007 ◽  
Vol 24-25 ◽  
pp. 229-232
Author(s):  
S.L. Ma ◽  
Wei Li ◽  
Cong Rong Zhu ◽  
J. Zhang ◽  
H.C. Ye

Tungsten carbide which is a hard and brittle material was ground by cast-iron bonded diamond wheel with ELID (Electrolytic In-Process Dressing) technique, for the purpose of getting high efficiency, super-precision machining. Three kinds of cast-iron bonded diamond wheels with different grain size were adopted to get different grinding efficiency and surface quality of workpieces. The grinding properties of cast-iron bonded grinding wheels with different grain size and the ground surface quality of tungsten carbide are discussed in this paper. The experiment results indicate that, under the same feeding amount, the grinding efficiency of the wheel with bigger grain size is higher, and it could make the dimension accuracy of the workpiece controllable, but the wheel with smaller grain size could get better ground surface quality. The two grinding phases are decided by the ratio between the size of abrasive grain and the thickness of the oxide layer on the grinding wheel.


2008 ◽  
Vol 53-54 ◽  
pp. 155-160 ◽  
Author(s):  
Qiu Sheng Yan ◽  
Ai Jun Tang ◽  
Jia Bin Lu ◽  
Wei Qiang Gao

A new plate polishing technique with an instantaneous tiny-grinding wheel cluster based on the magnetorheological (MR) effect is presented in this paper, and some experiments were conducted to prove its effectiveness and applicability. Under certain experimental condition, the material removal rate was improved by a factor of 20.84% as compared with the conventional polishing methods with dissociative abrasive particles, while the surface roughness of the workpiece was not obviously increased. Furthermore, the composite of the MR fluid was optimized to obtain the best polishing performance. On the basis of the experimental results, the material removal model of the new plate polishing technique was presented.


2010 ◽  
Vol 447-448 ◽  
pp. 193-197
Author(s):  
Wei Qiang Gao ◽  
Qiu Sheng Yan ◽  
Yi Liu ◽  
Jia Bin Lu ◽  
Ling Ye Kong

Electro-magneto-rheological (EMR) fluids, which exhibit Newtonian behavior in the absence of a magnetic field, are abruptly transformed within milliseconds into a Bingham plastic under an applied magnetic field, called the EMR effect. Based on this effect, the particle-dispersed EMR fluid is used as a special instantaneous bond to cohere abrasive particles and magnetic particles together so as to form a dynamical, flexible tiny-grinding wheel to machine micro-groove on the surface of optical glass. Experiments were conducted to reveal the effects of process parameters, such as the feed rate of the horizontal worktable, feeding of the Z axis, machining time and machining gap, on material removal rate of glass. The results indicate that the feed rate of the worktable at horizontal direction has less effect on material removal rate, which shows a fluctuation phenomenon within a certain range. The feed rate of the Z axis directly influences the machining gap and leads to a remarkable change on material removal rate. Larger material removal rate can be obtained when the feeding frequency of Z direction is one time per processing. With the increase of rotation speed of the tool, material removal rate increases firstly and decreases afterwards, and it gets the maximum value with the rotation speed of 4800 rev/min. The machining time is directly proportional to material removal amount, but inversely proportional to material removal rate. Furthermore, material removal rate decreases with the increase of the machining gap between the tool and the workpiece. On the basis of above, the machining mode with the tiny-grinding wheel based on the EMR effect is presented.


2021 ◽  
Vol 410 ◽  
pp. 262-268
Author(s):  
Vyacheslav M. Shumyacher ◽  
Sergey A. Kryukov ◽  
Natal'ya V. Baidakova

One of the critical physical and mechanical properties of metals and alloys is the suitability for abrasive machining. Machining by abrasive tools is the final operation that sets the desired macro-geometry parameters of processed blanks and microgeometry parameters of processed surfaces such as roughness and length of a bearing surface. Abrasive machining determines the most important physical and mechanical parameters of a blank surface layer, i.e. stresses, phase composition, structure. Machinability by abrasive tools depends on the machining performance affected both by the blank material properties and various processing factors. In our previous studies, we proved that during abrasive machining the metal microvolume affected by abrasive grains accumulates energy. This energy is used for metal dispersion and is converted into heat. According to the theoretical studies described herein, one may note the absence of a reliable and scientifically valid method as well as measuring instruments to determine the machinability of metals and alloys by abrasive tools. For this reason, we suggested a method simulating the effect the multiple abrasive grains produce in a grinding wheel, and enabling us to identify machinability of metals and alloys, select the most efficient abrasive materials for machining of the same, and form the basis for development of effective grinding operations.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 41 ◽  
Author(s):  
Hao Zhu ◽  
Zhaoyang Zhang ◽  
Kun Xu ◽  
Jinlei Xu ◽  
Shuaijie Zhu ◽  
...  

The fabrication of micro-holes in silicon substrates that have a proper taper, higher depth-to-diameter ratio, and better surface quality has been attracting intense interest for a long time due to its importance in the semiconductor and MEMS (Micro-Electro-Mechanical System) industry. In this paper, an experimental investigation of the machining performance of the direct and chemical-assisted picosecond laser trepanning of single crystalline silicon is conducted, with a view to assess the two machining methods. The relevant parameters affecting the trepanning process are considered, employing the orthogonal experimental design scheme. It is found that the direct laser trepanning results are associated with evident thermal defects, while the chemical-assisted method is capable of machining micro-holes with negligible thermal damage. Range analysis is then carried out, and the effects of the processing parameters on the hole characteristics are amply discussed to obtain the recommended parameters. Finally, the material removal mechanisms that are involved in the two machining methods are adequately analyzed. For the chemical-assisted trepanning case, the enhanced material removal rate may be attributed to the serious mechanical effects caused by the liquid-confined plasma and cavitation bubbles, and the chemical etching effect provided by NaOH solution.


2015 ◽  
Vol 656-657 ◽  
pp. 335-340 ◽  
Author(s):  
Fang Pin Chuang ◽  
Yan Cherng Lin ◽  
Hsin Min Lee ◽  
Han Ming Chow ◽  
A. Cheng Wang

The environment issue and green machining technique have been induced intensive attention in recent years. It is urgently need to develop a new kind dielectric to meet the requirements for industrial applications. The aim of this study is to develop a novel dielectric using gas media immersed in deionized water for electrical discharge machining (EDM). The developed machining medium for EDM can fulfill the environmentally friendly issue and satisfy the demand of high machining performance. The experiments were conducted by this developed medium to investigate the effects of machining parameters on machining characteristics in terms of material removal rate (MRR) and surface roughness. The developed EDM medium revealed the potential to obtain a stabilizing progress with excellent machining performance and environmentally friendly feature.


2021 ◽  
Vol 23 (2) ◽  
pp. 6-16
Author(s):  
Sergey Bratan ◽  
◽  
Stanislav Roshchupkin ◽  
Alexander Kharchenko ◽  
Anastasia Chasovitina ◽  
...  

Introduction. The final quality of products is formed during finishing operations, which include the grinding process. It is known that when grinding brittle materials, the cost of grinding work increases significantly. It is possible to reduce the scatter of product quality indicators when grinding brittle materials, as well as to increase the reliability and efficiency of the operation, by choosing the optimal parameters of the technological system based on dynamic models of the process. However, to describe the regularities of the removal of particles of a brittle non-metallic material and the wear of the surface of the grinding wheel in the contact zone, the known models do not allow taking into account the peculiarities of the process in which micro-cutting and brittle chipping of the material are combined. Purpose of the work: to create a new probabilistic model for removing the surface layer when grinding brittle non-metallic materials. The task is to study the laws governing the removal of particles of brittle non-metallic material in the contact zone. In this work, the removal of material in the contact zone as a result of microcutting and brittle chipping is considered as a random event. The research methods are mathematical and physical simulation using the basic provisions of the theory of probability, the laws of distribution of random variables, as well as the theory of cutting and the theory of a deformable solid. Results and discussion. The developed mathematical models make it possible to trace the effect on material removal of the overlap of single cuts on each other when grinding holes in ceramic materials. The proposed dependences show the regularity of stock removal within the arc of contact of the grinding wheel with the workpiece. The considered features of the change in the probability of material removal upon contact of the treated surface with an abrasive tool and the proposed analytical dependences are valid for a wide range of grinding modes, wheel characteristics and a number of other technological factors. The obtained expressions make it possible to find the amount of material removal also for schemes of end, flat and circular external grinding, for which it is necessary to know the amount of removal increment due to brittle fracture during the development of microcracks in the surface layer. One of the ways to determine the magnitude of this increment is to simulate the crack formation process using a computer. The presented results confirm the prospects of the developed approach to simulate the processes of mechanical processing of brittle non-metallic materials.


Sign in / Sign up

Export Citation Format

Share Document