Microstructure and Mechanical Properties of Cold-Rolled TRIP Steel Sheets

2011 ◽  
Vol 266 ◽  
pp. 280-283 ◽  
Author(s):  
Cai Nian Jing ◽  
Xiao Hui Chen ◽  
Ming Gang Wang ◽  
Qi Zhong Tian ◽  
Zuo Cheng Wang

Transformation induced plasticity (TRIP) steels have complex multiphase microstructure composed of ferrite, bainite and retained austenite [1]. These metastable retained austenite can transforms into martensite during plastic deformation, which generates a TRIP effect resulting in excellent combination of high strength and ductility even at high strength level [2-5]. For this reason, the TRIP-aided steel sheets are suitable to fabricate automobile parts, as they can offer excellent formability without sacrifice the strength and safety requirement of the steel sheets. As a result, the development of TRIP-aided steels has been a very important issue in the automobile field.

2018 ◽  
Vol 941 ◽  
pp. 568-573 ◽  
Author(s):  
Preston Wolfram ◽  
Christina Hensley ◽  
Ronald Youngblood ◽  
Rachael Stewart ◽  
Emmanuel de Moor ◽  
...  

Advanced High Strength Steel (AHSS) developments have largely focused on automotive applications using metallurgical approaches to develop retained austenite-containing microstructures in a variety of new steels, using the transformation-induced plasticity (TRIP) effect to achieve better combinations of strength and ductility. These efforts have been extended in recent studies to explore the potential to improve wear resistance, using metastable retained austenite to enhance wear resistance for earth-moving and other applications. This paper provides selected highlights of the authors’ efforts to develop wear resistant steels using AHSS processing approaches. Some attractive product/process development opportunities are identified, and it appears that martensite-austenite microstructures produced using “quenching and partitioning” exhibit increased wear resistance.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3781
Author(s):  
Zhongping He ◽  
Huachu Liu ◽  
Zhenyu Zhu ◽  
Weisen Zheng ◽  
Yanlin He ◽  
...  

Transformation Induced Plasticity (TRIP) steels with silicon–manganese (Si–Mn) as the main element have attracted a lot of attention and great interest from steel companies due to their low price, high strength, and high plasticity. Retained austenite is of primary importance as the source of high strength and high plasticity in Si–Mn TRIP steels. In this work, the cold rolled sheets of Si–Mn low carbon steel were treated with TRIP and Dual Phase (DP) treatment respectively. Then, the microstructure and composition of the Si–Mn low carbon steel were observed and tested. The static tensile test of TRIP steel and DP steel was carried out by a CMT5305 electronic universal testing machine. The self-built true stress–strain curve model of TRIP steel was verified. The simulation results were in good agreement with the experimental results. In addition, the phase transformation energy of retained austenite and the work borne by austenite in the sample during static stretching were calculated. The work done by austenite was 14.5 J, which was negligible compared with the total work of 217.8 J. The phase transformation energy absorption of retained austenite in the sample was 9.12 J. The role of retained austenite in TRIP steel is the absorption of excess energy at the key place where the fracture will occur, thereby increasing the elongation, so that the ferrite and bainite in the TRIP steel can absorb energy for a longer time and withstand more energy.


2005 ◽  
Vol 500-501 ◽  
pp. 461-470 ◽  
Author(s):  
Jiří Kliber ◽  
Bohuslav Mašek ◽  
Ondrej Zacek ◽  
H. Staňková

Transformation induced plasticity (TRIP) steel combines high strength and high ductility that makes it particularly suitable for forming. Martensite within a ferrite matrix is usually obtained either by continuous casting of slabs followed by hot rolling (which is the fastest method, hence the most economical one, producing, however, relatively thick products) or by the continuous casting of slabs followed by hot rolling, cold rolling and annealing (the method used for thin products). High cooling rates, low coiling temperatures and low reduction during hot deformation were generally found to suppress the formation of polygonal ferrite and promote the presence of retained austenite. This paper focuses on development and modifications of two CMnSi-based TRIP steels with 0,23 % C;1,4 % Mn; 1,9 % Si; ( 0,08 % Nb) by means of laboratory thermomechanical processing. Description of experimental devices for the analysis of transformation plasticity under tensioncompression loading is given. Experiments were carried out on the simulator for thermaldeformation cycles SMITWELD and TANDEM was used for thermomechanical processing on the laboratory rolling mill. The maximum volume fraction of retained austenite and the resulting optimum combination of tensile strength and ductility were achieved in testing heats. Special attention was paid to volume fraction changes of single phases and to changes in morphology of phases. The results suggest that rather short isothermal bainite transformation times are sufficient to obtain TRIP microstructure. The influence of parameters of thermomechanical processing such as the amount of strain, forming temperature and austenitization time and temperature on microstructures of TRIP steels were evaluated.


2014 ◽  
Vol 922 ◽  
pp. 412-417 ◽  
Author(s):  
A. Laureys ◽  
Tom Depover ◽  
Roumen H. Petrov ◽  
Kim Verbeken

The present work evaluates hydrogen induced cracking in a high strength TRIP steel with a complex multiphase microstructure, containing ferrite, bainite, retained austenite, and some martensite. Each structural constituent demonstrates a different behavior in the presence of hydrogen and when deformed, the retained austenite transforms to martensite. The goal of this work is to understand the response of the hydrogen saturated multiphase structure to a mechanical load. A tensile test on notched samples combined with in-situ electrochemical hydrogen charging was carried out. The test was interrupted at certain specific points, before the macroscopic failure of the material. Hydrogen induced crack initiation and propagation were examined by studying several intermediate elongations. The microstructure of the samples was characterized by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The EBSD measurements allowed both microstructural and crystallographic characterization of the hydrogen induced crack surroundings. A correlation was found between the occurrence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. These cracks were located at the surface in specific high stressed regions. Finite element simulations indicated that these regions were induced due to the presence of the notch.


2011 ◽  
Vol 239-242 ◽  
pp. 1092-1095
Author(s):  
Xu Tao Gao ◽  
Ai Min Zhao ◽  
Zheng Zhi Zhao ◽  
Ming Ming Zhang ◽  
Di Tang

By means of optical microscopy(OM), scanning electron microscopy(SEM),X-ray diffraction(XRD),And tensile test, Mechanical Properties of hot rolled transformation -induced plasticity (TRIP) steels which were prepared through three different coiling temperature was investigated. Result reveals that the formability index of the experimental steel descends when the coiling temperature becomes low. Different coiling temperature has greater impact on retained austenite. Amount and carbon content of retained austenite in the experimental steel get less with lower coiling temperature.


2018 ◽  
Vol 930 ◽  
pp. 501-506
Author(s):  
Eustáquio de Souza Baêta Júnior ◽  
Ramón Alves Botelho ◽  
Leonardo Sales Araújo ◽  
Luiz P. Brandão ◽  
Sergio Neves Monteiro

δ-TRIP steel is a recent concept and has been developed over the last ten years aiming to combine good mechanical strength and ductility. This class of steels is multiphase and contains δ and α ferrites, as well as austenite, bainite and/or martensite. The TRIP (Transformation Induced Plasticity) effect is influenced by those phases proportion, which depends on alloying contents. This paper investigates a chemical composition that allows adequate proportion among the phases, optimizing the microstructures by means of computational methods. These microstructures are designed to contain between 10 to 50% austenite, 10 to 70% α-ferrite and 20 to 80% δ-ferrite at the eutectoid temperature. The ThermoCalc Software [1] was used to predict the fractions of the microconstituents, producing graphs describing areas of interest of microconstituents as function of alloying elements variations that leads to the desired microstructure. Results indicate that the designed volume of the phases can be found for certain proportions among the alloying elements, higher concentrations of Al and Nb combined with C allow or not the occurrence of carbides and other phases in smaller quantities.


2016 ◽  
Vol 879 ◽  
pp. 867-872 ◽  
Author(s):  
M.C. Taboada ◽  
I. Gutiérrez ◽  
D. Jorge-Badiola ◽  
S.M.C. van Bohemen ◽  
F. Hisker ◽  
...  

New trends focused on achieving higher performance steels has led to a so-called 3rd Generation Advanced High Strength Steels (AHSS), in which the typical polygonal ferrite found in TRIP steels as a matrix phase is replaced by harder phases as Carbide-Free Bainite (CFB) and/or (tempered) martensite. Besides, large volume fractions of retained austenite (R.A.) with adequate stability are aimed for to improve the formability of the steels. Si containing steels are regarded as the most suitable to retard cementite formation and consequently reach high volume fractions of RA. In this work, CFB annealing schedules were applied to dilatometer samples of Fe-0.22C-2.0Mn-1.3Si. The overaging temperature TB was varied between 390 oC and 480 oC, and other processing variables investigated were the austenitizing temperature Taus, and the overaging holding time tB. The annealed samples analyzed with LOM, FEG-SEM, EBSD and X-ray diffraction techniques show that markedly different complex microstructures made up of bainite, ferrite, MA phase and retained austenite (R.A) are accomplished depending on the specific thermal cycle. These results are described in detail and discussed in relation to the dilatometry measurements.


2021 ◽  
Vol 1016 ◽  
pp. 732-737
Author(s):  
Junya Kobayashi ◽  
Hiroto Sawayama ◽  
Naoya Kakefuda ◽  
Goroh Itoh ◽  
Shigeru Kuraoto ◽  
...  

Various high strength steel sheets for weight reduction and safety improvement of vehicles have been developed. TRIP-aided steel with transformation induced plasticity of the retained austenite has high strength and ductility. Conventional TRIP-aided steels are subjected to austempering process after austenitizing. Generally, elongation and formability of TRIP-aided steel are improved by finely dispersed retained austenite in BCC phase matrix. The finely dispersed retained austenite and grain refinement of TRIP-aided steel can be achieved by hot rolling with heat treatment. Therefore, the improvement of mechanical properties of TRIP-aided steel is expected from the manufacturing process with hot rolling and then isothermal transformation process. In this study, thermomechanical heat treatment is performed by combining hot rolling and isothermal holding as the manufacturing process of TRIP-aided steel sheets. The complex phase matrix is obtained by hot rolling and then isothermal holding. Although the hardness of the hot rolled and isothermal held TRIP-aided steel is decreased, the volume fraction of retained austenite is increased.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1064 ◽  
Author(s):  
Víctor H. Vargas Cortés ◽  
Gerardo Altamirano Guerrero ◽  
Ignacio Mejía Granados ◽  
Víctor H. Baltazar Hernández ◽  
Cuauhtémoc Maldonado Zepeda

The combination of high strength and formability of transformation induced plasticity (TRIP) steels is interesting for the automotive industry. However, the poor weldability limits its industrial application. This paper shows the results of six low-alloy TRIP steels with different chemical composition which were studied in order to correlate retained austenite (RA) and non-metallic inclusions (NMI) with their resistance spot welded zones to their joints’ final mechanical properties. RA volume fractions were quantified by X-ray microdiffraction (µSXRD) while the magnetic saturation technique was used to quantify NMI contents. Microstructural characterization and NMI of the base metals and spot welds were assessed using scanning electron microscopy (SEM). Weld nuggets macrostructures were identified using optical microscopy (OM). The lap-shear tensile test was used to determine the final mechanical properties of the welded joints. It was found that NMI content in the fusion zone (FZ) was higher than those in the base metal and heat affected zone (HAZ). Whereas, traces of RA were found in the HAZ of highly alloyed TRIP steels. Lap-shear tensile test results showed that mechanical properties of spot welds were affected by NMI contents, but in a major way by the decomposition of RA in the FZ and HAZ.


2002 ◽  
Vol 88 (7) ◽  
pp. 400-405 ◽  
Author(s):  
Shunichi HASHIMOTO ◽  
Takahiro KASHIMA ◽  
Shushi IKEDA ◽  
Koh-ichi SUGIMOTO

Sign in / Sign up

Export Citation Format

Share Document