Freeze-Thaw and De-Icing Salt Resistance of Concrete Containing Mineral Admixtures and Air-Entraining Agent

2010 ◽  
Vol 163-167 ◽  
pp. 3122-3127 ◽  
Author(s):  
Xiao Lu Yuan ◽  
Bei Xing Li ◽  
Shi Hua Zhou

The effect of mineral admixtures and air-entraining agent on freezing-thawing and de-icing salt resistance of concrete has been studied. Concrete specimens made with ordinary Portland cement or ordinary Portland cement incorporating fly ash with the replacement of 10% or 20%, or 0.7/10000 air-entraining agent and fly ash with the replacement of 20%, or ground blast furnace slag with the replacement of 15% or 30%, were made and exposed to 500 cycles of freeze-thaw and de-icing salt environment. Concrete properties including loss of mass, relative dynamic elastic modulus, compressive strength, flexural strength and chloride ion diffusion coefficient were measured. Phase composition of samples was determined by means of x-ray diffraction (XRD). Results indicate that concrete exposed to freeze-thaw and de-icing salt environment is subjected to both physical frost action and chemical corrosion. Incorporation of mineral admixtures and air-entraining agent possesses more effect on internal deterioration, mechanical properties and permeability of concrete than on the scaling of concrete.

2017 ◽  
Vol 259 ◽  
pp. 30-34 ◽  
Author(s):  
Vlastimil Bílek ◽  
Filip Khestl ◽  
Pavel Mec

Hybrid cements represent a relatively new type of binders which combines some of the advantages of Ordinary Portland Cement and an application of mineral admixtures and alkali activation. Hybrid cements form then blends containing a low portion of OPC and a high proportion of mineral additions (such as blast furnace flag, fly ash, metakaoline, ...). This paper discusses the properties of mortars based on carbonate based activators. Mixtures composed from Ordinary Portland Cement, ground granulated blast furnace slag, fly ash and mechanically pre-activated fly ash were optimised with the target to achieve sufficient compressive strength. The influence of ratios between powder compounds, the dosage of activator and water to binder ratios are presented.


2011 ◽  
Vol 250-253 ◽  
pp. 33-39
Author(s):  
Xiao Lu Yuan ◽  
Bei Xing Li ◽  
Shang Chuan Zhao ◽  
Shi Hua Zhou

This paper investigates mechanical characteristics of concrete exposed to external flexural load, de-icing salt and freeze-thaw cycles. Concrete specimens made with ordinary Portland cement or ordinary Portland cement incorporating fly ash with the replacement of 10% or 20%, or 0.7/10000 air-entraining agent and 20% fly ash, or ground blast furnace slag with the replacement of 15% or 30%, were made and exposed to flexural load, freeze-thaw and de-icing salt environment. Mechanical properties of concrete including compressive strength and flexural strength were measured. Phase composition of samples was determined by means of x-ray diffraction (XRD). Results indicate that increasing flexural stress ratios reduced compressive strength and flexural strength of concrete, and presented higher improvement of mineral admixtures in concrete strength. Incorporation of mineral admixtures and air-entraining agent decreased the loss of concrete strength. X-ray diffraction analysis showed the presence of abundant calcium chloroaluminate and ettringite in paste samples.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 1015 ◽  
Author(s):  
Emy Aizat Azimi ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Petrica Vizureanu ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Andrei Victor Sandu ◽  
...  

A geopolymer has been reckoned as a rising technology with huge potential for application across the globe. Dolomite refers to a material that can be used raw in producing geopolymers. Nevertheless, dolomite has slow strength development due to its low reactivity as a geopolymer. In this study, dolomite/fly ash (DFA) geopolymer composites were produced with dolomite, fly ash, sodium hydroxide, and liquid sodium silicate. A compression test was carried out on DFA geopolymers to determine the strength of the composite, while a synchrotron Micro-Xray Fluorescence (Micro-XRF) test was performed to assess the elemental distribution in the geopolymer composite. The temperature applied in this study generated promising properties of DFA geopolymers, especially in strength, which displayed increments up to 74.48 MPa as the optimum value. Heat seemed to enhance the strength development of DFA geopolymer composites. The elemental distribution analysis revealed exceptional outcomes for the composites, particularly exposure up to 400 °C, which signified the homogeneity of the DFA composites. Temperatures exceeding 400 °C accelerated the strength development, thus increasing the strength of the DFA composites. This appears to be unique because the strength of ordinary Portland Cement (OPC) and other geopolymers composed of other raw materials is typically either maintained or decreases due to increased heat.


Author(s):  
Kotaro Kawamura ◽  
Joe Takemura ◽  
Shigenobu Iguchi ◽  
Tsutomu Yoshida ◽  
Masashi Kobayashi

<p>We are carrying out a construction project of new railroad viaducts. These new railroad viaducts are constructing using about 110,000 m<span>3</span> volume concrete. In this construction place, it is difficult for us to get low ASR-reactive aggregates and it is expected to be supplied with snowmelt water on the viaducts in winter. Then we tested ASR-reactive these local aggregates and found an effective mixed ratio of fly-ash is 20% of cement. On the other hand, various side effects were also expected by using fly-ash. For example, initial cracking due to contraction, early strength concrete, bleeding, etc. Therefore, we repeated various tests and examined and carried out a method that could ensure the same construction method and quality as when using ordinary Portland cement, even with fly-ash. Also, we adopted a structure that is unlikely to be affected by rainwater as a structural measure. For example, the entire adoption of a ramen type viaduct that has eliminated bearings, adoption of FRP sound barrier, etc. Then we made it possible to build highly durable railway viaducts by these various measures of materials and structures.</p>


2016 ◽  
Vol 7 (5) ◽  
pp. 546-550
Author(s):  
Aurelijus Daugėla ◽  
Džigita Nagrockienė ◽  
Laurynas Zarauskas

Cement as the binding agent in the production of concrete can be replaced with active mineral admixtures. Biofuel combustion fly ash is one of such admixtures. Materials used for the study: Portland cement CEM I 42.5 R, sand of 0/4 fraction, gravel of 4/16 fraction, biofuel fly ash, superplasticizer, water. Six compositions of concrete were designed by replacing 0%, 5%, 10%, 15% 20%, and 25% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. The tests revealed that the increase of biofuel fly ash content up to 20% increases concrete density and compressive strength after 7 and 28 days of curing and decreases water absorption, with corrected water content by using plasticizing admixture. It was found that concrete where 20% of cement is replaced by biofuel ash has higher frost resistance.


2018 ◽  
Vol 761 ◽  
pp. 120-123 ◽  
Author(s):  
Vlastimil Bílek ◽  
David Pytlík ◽  
Marketa Bambuchova

Use a ternary binder for production of a high performance concrete with a compressive strengths between 120 and 170 MPa is presented. The water to binder ratio of the concrete is 0.225 and the binder is composed of Ordinary Portland Cement (OPC), condensed silica fume (CSF), ground limestone (L), fly ash (FA) and metakaoline (MK). The dosage of (M + CSF) is kept at a constant level for a better workability of fresh concrete. Different workability, flexural and compressive strengths were obtained for concretes with a constant cement and a metakaoline dosage, and for a constant dosage (FA + L) but a different ratio FA / L. An optimum composition was found and concretes for other tests were designed using this composition.


Sign in / Sign up

Export Citation Format

Share Document