Characterization of Co-Cr-Mo (F-75) Alloy Produced by Solid State Sintering

2010 ◽  
Vol 173 ◽  
pp. 106-110
Author(s):  
Che Daud Zuraidawani ◽  
Shamsul Baharin Jamaludin ◽  
Md. Fazlul Bari

This research was carried out to fabricate and characterize Co-Cr-Mo (F-75) alloy. The samples have been prepared via solid state sintering. The lab work comprises the mixing of F-75 alloy powder with 2 wt. % of binder. The mixture was cold compacted using uniaxially press at 500 MPa. The samples were sintered at three different temperatures (1250 °C, 1300 °C and 1350 °C) in inert environment for 90 minutes of sintering time. The sintered samples were characterized by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and optical microscope (OM) Olympus BX41M. Bulk density, apparent porosity, percentage of linear shrinkage, and microhardness of the samples were also characterized. The average of the grain sizes were measured by line intercepts method. The optical micrographs showed the difference grain size in all sintered samples after etching with Marble reagent. The result shows the percentage of linear shrinkage, bulk density value and porosity increase with increasing the sintering temperature. Beside that, higher sintering temperature yields coarser grain structure.

2021 ◽  
Vol 1027 ◽  
pp. 3-9
Author(s):  
Yong Cheng Lu ◽  
Yuan Xun Li ◽  
Rui Peng ◽  
Da Ming Chen ◽  
Qing Hui Yang ◽  
...  

The performance of adding 0–3 wt% B2O3-CuO as a sintering aid to lower the sintering temperature of La0.5Sr0.5Co0.96Ni0.04O3-δ (LSCN) was investigated through solid-state reaction method. Results of linear shrinkage curve, bulk density, and microstructure indicated that BCu addition could promote the sintering process and enhance the densification of LSCN ceramics. With the increase of BCu content, low absolute value of TCR could be achieved, while the conductivity was deteriorated obviously. For LSCN ceramics sintered at 950 °C, the bulk density, conductivity, and TCR were worse than those sintered at higher temperatures. Consequently, the BCu-doped LSCN ceramics might not suitable for the application in the field of LTCC.


2011 ◽  
Vol 239-242 ◽  
pp. 994-997 ◽  
Author(s):  
Chien Min Cheng ◽  
Ming Chang Kuan ◽  
Kai Huang Chen ◽  
Chia Chi Shih ◽  
Jiann Sheng Jiang

Lead-free potassium sodium niobate ceramic, with the nominal composition of K0.5Na0.5NbO3, were synthesized by conventional solid state sintering, and its dielectric, ferroelectric, and piezoelectric properties were characterized as a function of sintering temperature. The orthorhombic to tetragonal phase transition (TO-T) temperature of K0.5Na0.5NbO3ceramic sample was about 220°C, and its Curie temperature was about 420°C. The high bulk density was obtained for all compositions by solid state sintering in air. Bulk density was increased with temperature and it reached to 4.4 g/cm3. The K0.5Na0.5NbO3ceramic sample sintered at 1100°C was optimized densification properties. In addition, the ferroelectric loop and dielectric characteristics dependence of different sintering temperature for K0.5Na0.5NbO3ceramic sample was obtained. Finally, we found that the piezoelectric constant (d33) was 160 pC/N, high remanent polarization (Pr) was 33mC/cm2, and high electromechanical coupling coefficients (kP) was about of 45%.


2013 ◽  
Vol 845 ◽  
pp. 256-260 ◽  
Author(s):  
M. Abubakar ◽  
A.B. Aliyu ◽  
Norhayati Ahmad

Porous ceramics were produced by compaction method of Nigerian clay and cassava starch. The samples were prepared by adding an amount from 5 to 30%wt of cassava starch into the clay and sintered at temperature of 900-1300°C. The influence of cassava starch content on the bulk density and apparent porosity was studied. The result of XRD and DTA/TGA shows that the optimum sintering temperature was found to be 1300°C. The percentage porosity increased from 12.87 to 43.95% while bulk density decreased from 2.16 to 1.46g/cm3 with the increase of cassava starch from 5 to 30%wt. The effect of sintering temperature and cassava starch content improved the microstructure in terms of porosity and the thermal properties of porous clay for various applications which requires a specific porosity.


2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Amir Arifin ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Junaidi Syarif

Hydroxyapatite (HA) has been widely used in biomedical applications due to its excellent biocompatibility. However, Hydroxyapatite possesses poor mechanical properties and only tolerate limited loads for implants. Titanium is well-known materials applied in implant that has advantage in mechanical properties but poor in biocompatibility. The combination of the Titanium alloy and HA is expected to produce bio-implants with good in term of mechanical properties and biocompatabilty. In this work, interaction and mechanical properties of HA/Ti6Al4V was analyzed. The physical and mechanical properties of HA/Ti6Al4V composite powder obtained from compaction (powder metallurgy) of 60 wt.% Ti6Al4V and 40 wt.% HA and sintering at different temperatures in air were investigated in this study. Interactions of the mixed powders were investigated using X-ray diffraction. The hardness and density of the HA/Ti6Al4V composites were also measured. Based on the results of XRD analysis, the oxidation of Ti began at 700 °C. At 1000 °C, two phases were formed (i.e., TiO2 and CaTiO3). The results showed that the hardness HA/Ti6Al4V composites increased by 221.6% with increasing sintering temperature from 700oC to 1000oC. In contrast, the density of the composites decreased by 1.9% with increasing sintering temperature. 


2011 ◽  
Vol 492 ◽  
pp. 250-255
Author(s):  
Bing Shen ◽  
Hua Wang ◽  
Shuai Li ◽  
Jiang Hong Gong

Grain growth in Ga2O3and MnO co-doped ZnO was investigated for sintering from 950° to 1250°C in air. Microstructural observation revealed that the samples sintered at lower temperatures consist of uniform equiaxed grains while the samples sintered at higher temperatures consist of plat-like grains, implying that the grain growth mechanism for the examined ZnO ceramics changes when the sintering temperature increases above about 1150°C. The traditional kinetic grain growth equation was employed to analyze the variation of grain size with sintering temperature and sintering holding time. It was shown that the grain growth exponent,n, increases from 2.17 for samples with uniform equiaxed grain structure to 4.30 for samples with plate like grain structure, while the apparent activation energy,Q, increases from 237 kJ/mol for low-temperature-sintered sample to 405 kJ/mol for high-temperature-sintered samples. The increases in bothnandQwere mainly attributed to the difference between the grain morphologies in low- and high-temperature ranges. The underestimation of the sizes of the plate-like grains was also considered to be another important origin for the higher values ofnandQfor the high-temperature-sintered samples.


2011 ◽  
Vol 184 (1) ◽  
pp. 14-18 ◽  
Author(s):  
Saulius Burinskas ◽  
Vytautas Adomonis ◽  
Julius Dudonis ◽  
Giedrius Laukaitis ◽  
Virgilijus Minialga ◽  
...  

2014 ◽  
Vol 798-799 ◽  
pp. 281-286
Author(s):  
J.G. Meller ◽  
A.B.C. Arnt ◽  
M.R. da Rocha

This work aims to evaluate the influence of temperature sintering of a ceramic mass to characterize the properties of a ceramic mass obtained with the addition of mill scale. This residue is consisting of iron oxides and can be used in replacing pigments used in ceramic materials. The constitution of mixture was performed after chemical characterization of the ceramic samples, with addition of 5% in weight of mill scale. Test specimens were sintered at temperatures of 900oC, 950oC and 1000oC. The samples were characterized by loss on ignition, linear shrinkage, water absorption, flexural strength by 3 points and colorimetric test. The results indicate that different firing temperatures influenced the strength and tone of the specimens tested and, allowing the application these materials as structural ceramic.


2017 ◽  
Vol 264 ◽  
pp. 99-102
Author(s):  
Farah Jaafar ◽  
Radzali Othman ◽  
Ahmad Fauzi Mohd Noor

Porous Tricalcium Phosphate (TCP) is recognized as a good biomaterial having excellent biocompatibility, biodegrability and bioresorbability. Some of the techniques to produce porous β-TCP, are replica technique (polymeric sponge method), sacrificial template method and direct forming method, however, these methods are complicated and can be costly. In this study, solid state sintering was adopted to form porous TCP as a new approach to overcome these problems. TCP bioceramic was prepared by mixing calcium hydrogen phosphate dihydrate and calcium carbonate. The powders were pressed into pellet form with four different pressures; 10, 20, 30 and 40 MPa. Then, the pellets were sintered at 1100°C to 1400°C and subsequently characterized by X-ray diffraction (XRD), density and porosity measurement, diametral tensile strength test (DTS) and scanning electron microscopy (SEM) evaluation. β-TCP phase was maintained at 1100°C and 1200°C whilst α-TCP phase had formed as second phase above 1300°C. The highest apparent porosity (60.93%) was obtained at 10 MPa and 1100°C sintering temperature, with the density of 1.12 g/cm3. The DTS values were in the range of 0.31 to 3.78 MPa in with lower DTS values were obtained at low compaction pressure and sintering temperature. Interconnected pores with high level porosity were observed at the fracture surfaces of the sintered pellets. Intraporosity was also observed. In conclusion, TCP bioceramics with interconnected pores were produced via solid state reaction; however, more work is required to improve the level of porosity.


2017 ◽  
Vol 36 (3) ◽  
pp. 844-848
Author(s):  
FA Ovat ◽  
DE Ewa ◽  
EA Egbe

The characterization of some clay as refractory materials for furnace lining has become relevant to find solutions to the cost involved in the purchase and importation of these refractory materials. This work investigated the refractory properties of clay samples for their suitability for use in the industries. Clay samples were collected from Gakem and Abouchiche areas and analysed for physical and chemical properties to determine the suitability of the clays as refractory materials. The results showed cold crushing strength (21.46MN/m2), thermal shock resistance (27 cycles), bulk density (3.52g/cm3), linear shrinkage(3.80%), apparent porosity (28.84%) and permeability (80%) for Gakem; and cold cold crushing strength (18.40MN/m2), thermal shock resistance (25 cycles), bulk density(2.81g/cm3), linear shrinkage (3.70%), apparent porosity (25.86%) and permeability (77%) for Abouchiche respectively. The chemical compositions of these clay samples were also investigated. The results showed that the samples fall under Aluminosilicate type of clay because of their high values of Aluminium Oxide and Silicon Oxide. Tests showed that clay from these areas can be used to produce refractory materials that can withstand a furnace temperature of about 1600°C. http://dx.doi.org/10.4314/njt.v36i3.26


Sign in / Sign up

Export Citation Format

Share Document