Adsorption Properties of a Benzotriazole UV-Absorber on Silk, Wool and Nylon

2011 ◽  
Vol 175-176 ◽  
pp. 681-686
Author(s):  
Jun Zhang ◽  
Jing Chun Lv ◽  
Ren Cheng Tang

The photoyellowing and poor UV-protection ability of silk, wool and nylon fabric can be improved through the anti-UV finishing with UV-absorbers. This study is concerned with the adsorption properties of a water-soluble benzotriazole UV-absorber on silk, wool and nylon. It was found that the adsorption kinetics of the UV absorber on the three fibers followed the pseudo second-order kinetic model and the rate constant indicated a faster adsorption rate for UV absorber on silk than those for wool and nylon. The activation energies for the adsorption process on silk, wool and nylon were found to be 49.74, 63.92 and 78.21 kJ/mol, respectively. The adsorption of the UV-absorber on silk and wool had the characteristics of low affinity constant and high saturation value whereas that on nylon showed a small saturation value with a remarkably high affinity constant. The electrostatic interactions between the positively charged amino groups in fibers and the anionic sulfonate groups in UV absorber have an important role in the adsorption of UV absorber.

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Bo Wei ◽  
Qiu-Yuan Chen ◽  
Guoqiang Chen ◽  
Ren-Cheng Tang ◽  
Jun Zhang

There has been growing interest in the dyeing of textiles with natural dyes. The research about the adsorption properties of natural dyes can help to understand their adsorption mechanism and to control their dyeing process. This study is concerned with the kinetics and isotherms of adsorption of lac dyes on wool, silk, and nylon fibers. It was found that the adsorption kinetics of lac dyes on the three fibers followed the pseudosecond-order kinetic model, and the adsorption rate of lac dyes was the fastest for silk and the slowest for wool. The activation energies for the adsorption process on wool, silk, and nylon were found to be 107.15, 87.85, and 45.31 kJ/mol, respectively. The adsorption of lac dyes on the three fibers followed the Langmuir mechanism, indicating that the electrostatic interactions between lac dyes and those fibers occurred. The saturation values for lac adsorption on the three fibers decreased in the order of wool > silk > nylon; the Langmuir affinity constant of lac adsorption on nylon was much higher than those on wool and silk.


2018 ◽  
Vol 913 ◽  
pp. 907-916 ◽  
Author(s):  
Shu Yan ◽  
Yi Ming Pan ◽  
Lu Wang ◽  
Xiao Yan Zhang ◽  
Jing Jing Liu ◽  
...  

The attapulgite microspheres were produced by spray drying method and calcination process subsequently. The effects of calcination temperature on the microstructure and adsorption properties of methylene blue(MB) were investigated systematically. Results show that the median diameter of the microspheres increases after calcination. The adsorption capacity and removal efficiency of MB reaches the maximum values(96.62mg/g and 96.6%) after calcined at 600°C and decreases with the temperature increasing. The adsorption process can be described better by the pseudo-second-order kinetic model and fit the the Langmuir equation. The attapulgite microsphere shows good adsorption properties, which may be used as potential applications in various dyeing wastewater fields.


2018 ◽  
Vol 77 (5) ◽  
pp. 1363-1371 ◽  
Author(s):  
Yong Fu ◽  
Yue Huang ◽  
Jianshe Hu ◽  
Zhengjie Zhang

Abstract A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG0 and ΔH0 suggested that the adsorption was a spontaneous exothermic process.


2021 ◽  
Author(s):  
Xiao Liu ◽  
Shaoyang Shi ◽  
Xuefei Hu ◽  
Tao Sun ◽  
Juanxiang Zhang ◽  
...  

Abstract Farming in China’s rural areas leads to antibiotic pollution in waterbodies making it a grave issue. Cotton straw biochar (CSBC) was prepared by oxygen-limited pyrolysis at 400 °C (CSBC400) and 600 °C (CSBC600); and Mn-modified CSBC (MCSBC) was produced by the KMnO4 wrapping method for tetracycline (TC) removal from aqueous solutions. The effects of temperature, initial solution concentration, pH, ion type, and ionic strength on TC adsorption were investigated. The adsorption process of the biochars achieved an equilibrium state after 360 min, and the highest equilibrium adsorption amount (13.254 mg/g) was found for MCSBC. The kinetic adsorption process, which was dominated by chemisorption, was well-described by the pseudo-second-order kinetic model. The adsorption was a non-homogeneous heat absorption process, and the adsorption isotherm data fitting was compatible with the Freundlich model. A better adsorption effect of MCSBC was observed when the pH was < 4. Monovalent cations (Na+, K+, NH4+, and Ca2+) had a facilitative effect on the adsorption process. The adsorption mechanisms of TC by MCSBC included pore diffusion, H bonding, electrostatic interactions, and π–π accumulation. Therefore, MCSBC has a good adsorption capacity for TC and can be used for the treatment of TC-based pollutants in aqueous environments.


2016 ◽  
Vol 17 (2) ◽  
pp. 351 ◽  
Author(s):  
I. SAFARIK ◽  
N. ASHOURA ◽  
Z. MADEROVA ◽  
K. POSOIKOVA ◽  
E. BALDIKOVA ◽  
...  

Magnetically modified Posidonia oceanica sea grass dead biomass was employed as an adsorbent of organic dyes. The adsorption of seven water-soluble organic dyes was characterized using Langmuir adsorption model. The highest calculated maximum adsorption capacity was found for Bismarck brown Y (233.5 mg g-1), while the lowest capacity value was obtained for safranin O (88.1 mg g-1). The adsorption processes followed the pseudo-second-order kinetic model and the thermodynamic studies indicated spontaneous and endothermic adsorption.


2017 ◽  
Vol 18 (1) ◽  
pp. 306-317 ◽  
Author(s):  
Xiaozhao Jin ◽  
Xiaowen Wu ◽  
Zhijie Zhang ◽  
Zhaohui Huang ◽  
Yan'gai Liu ◽  
...  

Abstract Carbon-coated Fe3O4 porous particles were synthesized with phenolic resin as a carbon source using impregnating pyrolysis. The magnetic property, phase structure, pore structure, and surface morphology of the pyrolysis products were characterized by vibrating specimen magnetometer, X-ray diffraction, Brunauer–Emmett–Teller (BET), and scanning electron microscopy, respectively. Also, the adsorption properties of iron (III) ions on Fe3O4@C as well as pure carbon, including adsorption isothermal, kinetics, and pH effect, were investigated. The results showed that the size of synthesized Fe3O4@C particles ranged from 10 to 50 μm with micro-meso pores sized below 5 nm. The main phases of Fe3O4@C were magnetite, graphite and amorphous carbon. The adsorption kinetics of iron (III) ions on Fe3O4@C could be expressed by the pseudo-second-order kinetic model and the adsorption isotherm was fitted by a Freundlich model. Nano-Fe3O4 had synergism to porous carbon on the absorption of iron (III) ions.


Author(s):  
Ruqing Jiang ◽  
Guangwei Yu ◽  
Pamphile Ndagijimana ◽  
Yu Wang ◽  
Futian You ◽  
...  

Abstract Using solid adsorbents, such as biochar, has been a potential practice to remove the pollutants from water bodies to render the water safer for potential usage. A potential application of sludge biochar-based adsorbent (SBA) obtained by pyrolysis with hydrothermal treatment was developed to adsorb Direct Red 23 (DR23) from wastewater. The results showed that the synthesized SBA (0.5 g/L) in the adsorption of DR23 at low concentration (&lt;20 mg/L), the DR23 were totally removed from the aqueous solution. PH had a limited effect on the adsorption, while an increase in temperature was shown to have a large enhancing effect. The adsorption kinetics were the best fit by the pseudo-second-order kinetic model, while the equilibrium data were best fitted by the Langmuir isotherm. A maximum saturation adsorption capacity of SBA of 111.98 mg/g was achieved. SBA could then be regenerated by pyrolysis, and after three cycles, SBA still retained the good adsorption ability of DR23, a removal rate exceeding 97% was achieved. Functional groups, pores, π-π bond, and electrostatic interactions are the key to the adsorption mechanisms. The results proved that SBA would be a promising material in the removal application of dyes in printing and dyeing wastewater.


2018 ◽  
Vol 21 (8) ◽  
pp. 583-593 ◽  
Author(s):  
Sara Rahnama ◽  
Shahab Shariati ◽  
Faten Divsar

Objective: In this research, a novel magnetite titanium dioxide nanocomposite functionalized by amine groups (Fe3O4@SiO2@TiO2-NH2) was synthesized and its ability for efficient removal of Acid Fuchsine as an anionic dye from aqueous solutions was investigated. Method: The core-shell structure of Fe3O4@SiO2@TiO2 was prepared using Fe3O4 as magnetic core, tetra ethyl orthosilicate as silica and tetra butyl titanate as titanium source for shell. The synthesized nanocomposites (particle size lower than 44 nm) were characterized by FT-IR, XRD, DRS, SEM and TGA instruments. The various experimental parameters affecting dye removal efficiency were investigated and optimized using Taguchi fractional factorial design. Results: The synthesized adsorbent showed the highest removal efficiency of Acid Fuchsine (99 %) at pH= 3.5, without salt addition and during stirring at contact times less than 10 minutes. The study of kinetic models at two concentration levels showed the fast dye sorption on the surface of proposed nanocomposites with pseudo second order kinetic model (R2=1). Also, the fitting of Acid Fuchsine sorption data to Freundlich, Langmuir and Temkin isotherms suggested that Freundlich model gave a better fitting than other models (R2=0.9936, n=2). Conclusion: Good chemical stability, excellent magnetic properties, very fast adsorption kinetics and high removal efficiency make the synthesized nanocomposite as a proper recoverable sorbent for removal of Acid Fuchsine dye from wastewaters.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1615
Author(s):  
Thanh Tam Nguyen ◽  
Hung-Hsiang Chen ◽  
Thi Hien To ◽  
Yu-Chen Chang ◽  
Cheng-Kuo Tsai ◽  
...  

Adsorbent made by carbonization of biomass under oxygen-limited conditions has become a promising material for wastewater treatment owing to its cost-effective, simple, and eco-friendly processing method. Ultrasound is considered a green technique to modify carbon materials because it uses water as the solvent. In this study, a comparison of Reactive Black 5 (RB5) adsorption capacity between biochar (BC) generated by pyrolysis of water bamboo (Zizania latifolia) husks at 600 °C and ultrasound-assisted biochar (UBC) produced by pyrolysis at 600 °C assisted by ultrasonic irradiation was performed. UBC showed a greater reaction rate and reached about 80% removal efficiency after 4 h, while it took 24 h for BC to reach that level. Scanning electron microscope (SEM) images indicated that the UBC morphology surface was more porous, with the structure of the combination of denser mesopores enhancing physiochemical properties of UBC. By Brunauer, Emmett, and Teller (BET), the specific surface areas of adsorbent materials were analyzed, and the surface areas of BC and UBC were 56.296 m2/g and 141.213 m2/g, respectively. Moreover, the pore volume of UBC was 0.039 cm3/g, which was higher than that of BC at 0.013 cm3/g. The adsorption isotherms and kinetics revealed the better fits of reactions to Langmuir isotherm and pseudo-second-order kinetic model, indicating the inclination towards monolayer adsorption and chemisorption of RB5 on water bamboo husk-based UBC.


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document