scholarly journals Adsorption Properties of Lac Dyes on Wool, Silk, and Nylon

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Bo Wei ◽  
Qiu-Yuan Chen ◽  
Guoqiang Chen ◽  
Ren-Cheng Tang ◽  
Jun Zhang

There has been growing interest in the dyeing of textiles with natural dyes. The research about the adsorption properties of natural dyes can help to understand their adsorption mechanism and to control their dyeing process. This study is concerned with the kinetics and isotherms of adsorption of lac dyes on wool, silk, and nylon fibers. It was found that the adsorption kinetics of lac dyes on the three fibers followed the pseudosecond-order kinetic model, and the adsorption rate of lac dyes was the fastest for silk and the slowest for wool. The activation energies for the adsorption process on wool, silk, and nylon were found to be 107.15, 87.85, and 45.31 kJ/mol, respectively. The adsorption of lac dyes on the three fibers followed the Langmuir mechanism, indicating that the electrostatic interactions between lac dyes and those fibers occurred. The saturation values for lac adsorption on the three fibers decreased in the order of wool > silk > nylon; the Langmuir affinity constant of lac adsorption on nylon was much higher than those on wool and silk.

2011 ◽  
Vol 175-176 ◽  
pp. 681-686
Author(s):  
Jun Zhang ◽  
Jing Chun Lv ◽  
Ren Cheng Tang

The photoyellowing and poor UV-protection ability of silk, wool and nylon fabric can be improved through the anti-UV finishing with UV-absorbers. This study is concerned with the adsorption properties of a water-soluble benzotriazole UV-absorber on silk, wool and nylon. It was found that the adsorption kinetics of the UV absorber on the three fibers followed the pseudo second-order kinetic model and the rate constant indicated a faster adsorption rate for UV absorber on silk than those for wool and nylon. The activation energies for the adsorption process on silk, wool and nylon were found to be 49.74, 63.92 and 78.21 kJ/mol, respectively. The adsorption of the UV-absorber on silk and wool had the characteristics of low affinity constant and high saturation value whereas that on nylon showed a small saturation value with a remarkably high affinity constant. The electrostatic interactions between the positively charged amino groups in fibers and the anionic sulfonate groups in UV absorber have an important role in the adsorption of UV absorber.


2020 ◽  
Author(s):  
Guowang Tang ◽  
Cangqin Jia ◽  
Guihe Wang ◽  
Peizhi Yu ◽  
Xihao Jiang

AbstractThe adsorption of bacteria onto the Na-montmorillonite (Na-MMT) was studied as a function of time, bacterial concentration, temperature and pH with the introduction of the organic and inorganic calcium sources. The results indicated that albeit revealing the same adsorption mechanism, the organic calcium (i.e., Ca(CH3COO)2) proposed in this study is more beneficial and environmentally friendly than the inorganic calcium (i.e., CaCl2) in terms of the adsorption of bacteria onto the Na-MMT surface, which can be ascribed to the formation of the denser aggregates in the Na-MMT with Ca(CH3COO)2. Meanwhile, the adsorption kinetics and isotherms followed the pseudo-second-order kinetic model and Langmuir Equation for both two calcium sources. Meanwhile, the adsorption bands of the water molecules on the minerals were observed to shift significantly after the bacterial adsorption, showing that the hydrogen bonding on the Na-MMT surface played an important role during this process. A value of ΔH0 > 0 indicated that the bacterial adsorption was affected by van der Waals force and hydrophobic interaction. Finally, the negative zeta potentials of the Na-MMT increased with the addition of Ca2+ ions, and the experimental data also showed that the adsorption of bacteria onto the Na-MMT was mainly determined by the electrostatic and non-electrostatic forces.


2013 ◽  
Vol 368-370 ◽  
pp. 269-274
Author(s):  
Jin Chuan Gu ◽  
Zi Liang Mei ◽  
Chun Mei Wei ◽  
Hui Yan Wang ◽  
Wen Jun Lin ◽  
...  

The adsorption property of Cu2+ in aqueous solution by carbonaceous adsorbent made by sludge was studied. Under static conditions, the influences to the adsorption properties by the dosage of adsorbent, adsorption time, concentration of Cu2+, adsorption temperature, pH value, and other factors were systematically studied. The adsorption kinetics of the carbonaceous adsorbent was analyzed, and its adsorption properties were primarily discussed. The research results show that the carbonaceous adsorbent made by sludge has strong removal efficiency of Cu2+; the adsorption process complies with the Fruendlich adsorption isotherm; and the adsorption process can be represented by first-order kinetic model.


2019 ◽  
Vol 12 (06) ◽  
pp. 1941001
Author(s):  
Jiangyang Xie ◽  
Chen Wu ◽  
Fenfen Fan ◽  
Xiaoxia Li ◽  
Aining Guo ◽  
...  

In this research, the adsorption properties of biomass tube clusters (dandelion pappi) and carbonized biomass tube clusters toward dyes were investigated, respectively. The results showed that both biomass tube clusters and carbonized biomass tube clusters exhibited excellent adsorption properties for cationic dyes (alkaline orange and methyl violet). The adsorption properties of biomass tube clusters are better than that of carbonized biomass tube clusters. The adsorption capacity of biomass tube clusters to alkaline orange and methyl violet are 162.25[Formula: see text]mg[Formula: see text][Formula: see text] and 258.34[Formula: see text]mg[Formula: see text][Formula: see text], respectively, and carbonized biomass tube clusters are 158.50[Formula: see text]mg[Formula: see text][Formula: see text] and 136.95[Formula: see text]mg[Formula: see text][Formula: see text], respectively. Moreover, these materials display the excellent performance in terms of adsorption kinetics, and can reach adsorption equilibrium within 40[Formula: see text]min due to the characteristic of tubular structure. Simulation results demonstrated that the adsorption isotherm and the adsorption kinetics of the two materials were well matched with the Langmuir model and the pseudo first-order kinetic model, respectively. Besides the excellent adsorption property, many other advantages such as wide sources, environmental friendliness and low-cost make the present tube clusters potential application value in the field of dye wastewater treatment.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4318
Author(s):  
Elie Meez ◽  
Abbas Rahdar ◽  
George Z. Kyzas

The threat of the accumulation of heavy metals in wastewater is increasing, due to their abilities to inflict damage to human health, especially in the past decade. The world’s environmental agencies are trying to issue several regulations that allow the management and control of random disposals of heavy metals. Scientific studies have heavily focused on finding suitable materials and techniques for the purification of wastewaters, but most solutions have been rejected due to cost-related issues. Several potential materials for this objective have been found and have been compared to determine the most suitable material for the purification process. Sawdust, among all the materials investigated, shows high potential and very promising results. Sawdust has been shown to have a good structure suitable for water purification processes. Parameters affecting the adsorption mechanism of heavy metals into sawdust have been studied and it has been shown that pH, contact time and several other parameters could play a major role in improving the adsorption process. The adsorption was found to follow the Langmuir or Freundlich isotherm and a pseudo second-order kinetic model, meaning that the type of adsorption was a chemisorption. Sawdust has major advantages to be considered and is one of the most promising materials to solve the wastewater problem.


2012 ◽  
Vol 8 (3) ◽  
Author(s):  
Xiaoyan Dai ◽  
Chenhuan Yu ◽  
Qiaofeng Wu

Abstract Jiangpo is an increasingly popular East Asian spice which is made from Mangnolia officinalis bark and ginger juice. Since it induces bioactive compounds decomposition and has influence on final flavor and fragrance, cooking is regarded as the key operation in preparation of Jiangpo. To evaluate the bioactive compounds content changes of Jiangpo during thermal processing, kinetic parameters including reaction order, rate constant, T1/2 and activation energy of bioactive markers namely honokiol, magnolol and curcumin were determined. Cooking was set at temperatures 60, 90 and 120 °C for selected time intervals. Results displayed the thermal kinetic characteristics of the three compounds. Thermal degradation of Honokiol and magnolol both followed first order kinetic model and the loss of curcumin fitted second order. A mathematical model based on the obtained kinetic parameters has also been developed to predict the degradation of honokiol, magnolol and curcumin in non-isothermal state. All the information in this paper could contribute necessary information for optimizing the existing heat processing of Jiangpo.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3890
Author(s):  
Chenlu Jiao ◽  
Die Liu ◽  
Nana Wei ◽  
Jiannan Gao ◽  
Fan Fu ◽  
...  

Porous sustainable cellulose/gelatin/sepiolite gel beads were fabricated via an efficient ‘hydrophilic assembly–floating droplet’ two-step method to remove Congo red (CR) from wastewater. The beads comprised microcrystalline cellulose and gelatin, forming a dual network framework, and sepiolite, which acted as a functional component to reinforce the network. The as-prepared gel beads were characterized using FTIR, SEM, XRD, and TGA, with the results indicating a highly porous structure that was also thermally stable. A batch adsorption experiment for CR was performed and evaluated as a function of pH, sepiolite addition, contact time, temperature, and initial concentration. The kinetics and isotherm data obtained were in agreement with the pseudo-second-order kinetic model and the Langmuir isotherm, with a maximum monolayer capacity of 279.3 mg·g−1 for CR at 303 K. Moreover, thermodynamic analysis demonstrated the spontaneous and endothermic nature of the dye uptake. Importantly, even when subjected to five regeneration cycles, the gel beads retained 87% of their original adsorption value, suggesting their suitability as an efficient and reusable material for dye wastewater treatments.


2018 ◽  
Vol 913 ◽  
pp. 907-916 ◽  
Author(s):  
Shu Yan ◽  
Yi Ming Pan ◽  
Lu Wang ◽  
Xiao Yan Zhang ◽  
Jing Jing Liu ◽  
...  

The attapulgite microspheres were produced by spray drying method and calcination process subsequently. The effects of calcination temperature on the microstructure and adsorption properties of methylene blue(MB) were investigated systematically. Results show that the median diameter of the microspheres increases after calcination. The adsorption capacity and removal efficiency of MB reaches the maximum values(96.62mg/g and 96.6%) after calcined at 600°C and decreases with the temperature increasing. The adsorption process can be described better by the pseudo-second-order kinetic model and fit the the Langmuir equation. The attapulgite microsphere shows good adsorption properties, which may be used as potential applications in various dyeing wastewater fields.


2018 ◽  
Vol 77 (5) ◽  
pp. 1363-1371 ◽  
Author(s):  
Yong Fu ◽  
Yue Huang ◽  
Jianshe Hu ◽  
Zhengjie Zhang

Abstract A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG0 and ΔH0 suggested that the adsorption was a spontaneous exothermic process.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5451
Author(s):  
Sylwia Stegenta-Dąbrowska ◽  
Karolina Sobieraj ◽  
Jacek A. Koziel ◽  
Jerzy Bieniek ◽  
Andrzej Białowiec

Knowledge of kinetic parameters of CO production during biowaste composting is significantly important for the prediction of its course and estimation of total gas quantity. This allows increasing the control of the process, to minimize its negative impact on the environment and to protect the occupational safety of employees exposed to CO in the biowaste composting plant. For the first time, a full study of the influence of temperature and biowaste sterilization on the kinetics of CO production is presented. The lab-scale experiments used a mixture of green waste, dairy cattle manure, and sawdust in two variants: sterilized and non-sterilized samples. The process was carried out in controlled temperature reactors with measuring the concentrations of CO, O2, and CO2 every 12 h.CO production and k value increased with temperature. However, higher CO production was observed in biotic conditions between 10~50 °C, suggesting the biotic CO formation and 1st-order kinetics. The abiotic (thermochemical) process was more efficiently generating CO above 50 °C, described with a 0-order kinetic model. Additionally, the rate constant (k) value of CO production under biotic conditions was increasing up to a temperature of 60 °C, above which a slight decrease in CO production rate was observed at 70 °C. The presented results are the basis for further studies focused on the feasibility of (1) the mitigation and (2) valorization of CO production during the biowaste biostabilization are warranted.


Sign in / Sign up

Export Citation Format

Share Document