Experimental Study on the Properties of Modified PSA Fiber after Corrosion

2011 ◽  
Vol 183-185 ◽  
pp. 1631-1634
Author(s):  
Xin Yan Yuan ◽  
Heng Gen Shen ◽  
Zhen Hua Wang

In order to improve the reliability of PSA in industrial furnaces corrosion condition, tests are made in different concentration of PTFE emulsion to modify PSA fiber, and experiments are conducted on the comparison of corrosion resistance before and after modification. The results show that: the mechanics properties of PSA fiber decline after the modification with PTFE emulsion, but the corrosion resistance is obviously improved. There will be rising phenomenon of the mechanical properties of the fiber after corrosion treatment by 15% PTFE emulsion initially. The improvement of corrosion resistance of modified PSA fiber has certain relationship with the concentration of PTFE emulsion. In alkaline corrosive environment, the corrosion resistance of modified PSA fiber has a certain proportional relationship to the concentration of PTFE emulsion. In acid corrosive environment, there exists a optimal value of the concentration of PTFE emulsion. The modified effect of the concentration of 5% and 10% PTFE emulsion is better than that of 15%. This shows that the PSA must be dealt against corrosion when used in industrial furnaces with high temperature, high humidity and the corrosion condition. Dipping with PTFE emulsion is a very effective method.

2010 ◽  
Vol 146-147 ◽  
pp. 221-224
Author(s):  
Xin Yan Yuan ◽  
Heng Gen Shen ◽  
Zhen Hua Wang ◽  
Wei Li Hou

In order to reveal the influence of acidic gas SO2 and CaO etc alkali substances which are contained in industrial furnaces smoke to the strength of PSA fiber, tests are made in different acid and alkali conditions, and the changes of its surface morphology were observed by scanning electron microscope (SEM). The results show that: PSA has better acid corrosion resistance than alkali corrosion resistance. Its acid corrosion resistance is similar to the domestic aramid. PSA is better than Nomex in the concentration of 5% H2SO4. Its alkali corrosion resistance is worse than domestic aramid. The retention rate of breaking strength drop to 60.80% and 69.52% respectively after treated in the concentration of 5% H2SO4 for 48 hours and in the concentration of 5% NaOH for 4 hours. The elongation rate decline to 68.14% and 40.22% respectively, and the elongation rate fell to 68.14% and 40.22% respectively. Therefore, the PSA must be dealt against corrosion when used in strong acid or alkali environment.


Alloy Digest ◽  
2008 ◽  
Vol 57 (12) ◽  

Abstract Ferrium S53 was developed for use as a structural corrosion resistant steel for aircraft landing gear. S53 has a corrosion resistance equivalent to 440C, strength equivalent to or better than 300M (AMS 6257A) and SAE 4340 (see Mechanical Properties), optimum microstructure features for maximum fatigue resistance, and a surface hardenability equal to or greater than 67 HRC for wear and fatigue. This datasheet is an update to Alloy Digest SS-942 and SS-1003. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: SA-589. Producer or source: QuesTek Innovations, LLC.


The abundant availability of demolition waste from construction industry is leading towards a significant problem of disposal, land and air pollution. The natural aggregate resources are also depleting due to development of construction activities. An attempt is made in this study to convert this waste into wealth by substituting the recycled brick from demolition waste to granite aggregate in production of the concrete. The granite aggregate (GA) is replaced with recycled brick aggregate (RBA) by 25% of its weight to produce M15 and M20 grades of concrete. The granite aggregate concrete (GAC) and recycled brick aggregate concrete (RBAC) were subjected to different temperatures between 100 to 1000oC for a duration of 3 hours and the mechanical properties such as compressive strength and flexural strength were examined to assess its fire performance. The response of RBAC is better than GAC at each temperature. The study revealed that the residual strength increases with the increase in grade of concrete at all temperatures.


2008 ◽  
Vol 591-593 ◽  
pp. 860-864 ◽  
Author(s):  
Leszek Adam Dobrzański ◽  
Krzysztof Lukaszkowicz

The properties of thin hard coatings and consequently their functionality are influenced by microstructural characteristics such as mechanical properties. A variety of interlayers has been used in hybrid coatings for various purposes. The paper presents investigation results of the structure, erosion and corrosion resistance, and mechanical properties of the galvanic Ni/Cr, hybrid Ni/Cr + Zr/ZrN (galvanic + PVD) and monolithic nitride coatings deposited by PVD technique (dc magnetron sputtering) onto brass (CuZn40Pb2) substrates. The ceramic PVD coatings or layers are the Cr-, Ti-, TiAl-, Zr-nitrides. The investigation covered the metallographic analysis on the scanning electron microscope, mechanical properties and erosion test. The corrosion tests were made in a 1 M NaOH solution. It was found out that PVD coatings display high corrosion resistance.


2013 ◽  
Vol 652-654 ◽  
pp. 1143-1148
Author(s):  
Peng Jun Cao ◽  
Ji Ling Dong ◽  
Hai Dong Wu ◽  
Pei Geng Fan

The Cu-based bulk glassy alloys in Cu-Zr-Ti-Ni systems were prepared by means of copper mold casting. The structure and corrosion resistance of Cu-based bulk glassy alloys were analyzed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), electrochemistry method, lost weight method. The result indicates the supercooled liquid temperature interval (ΔTx) is up to 70.98 K for Cu50Zr25Ti15Ni10bulk glassy alloy. The maximum diameter was up to 5.0 mm for the Cu55Zr25Ti15Ni5bulk glassy alloy. For electrochemistry corrosion in 3.5% NaCl solution, self-corrosion electric current density of the Cu50Zr25Ti15Ni10bulk glassy alloys is obviously lower than that of stainless steel and brass, so corrosion resistance of Cu-based bulk glassy alloys is better than stainless steel and brass at the same corrosion condition. The lost weight method showed that the corrosion rate of brass, stainless steel and glassy alloy is respectively 10.08 g/(m2•h), 6.08 g/(m2•h) and 2.19 g/(m2•h) in the 3% NaCl solution, which also indicates that the corrosion resistance of Cu-based bulk glassy alloys is better than stainless steel and brass. The Cu-based bulk glassy alloys can be used in the special field demanding to have the super high strength, hardness and corrosion resistance.


2020 ◽  
Vol 24 (5) ◽  
pp. 185-193
Author(s):  
Carolina Aurélia Ribeiro Maestro ◽  
Marina Cristina Ferreira ◽  
Alysson Helton Santos Bueno ◽  
Artur Mariano de Sousa Malafaia

Ti-6A-l4V alloy is widely used in implants and prosthesis applications. Although machining is a fast and economical process, the roughness generated can compromise corrosion resistance. Thus, the goal of this study was to overcome this limitation using thermal oxidation in machined surfaces. Samples with polished surfaces were used for comparison purposes. Two sets of machining parameters were used to generate different roughness, property evaluated in polished and machined samples before and after thermal oxidation. Vickers microhardness and polarization tests using simulated body fluid (SBF) were also performed. Thermal oxidation generated similar microhardness for polished and machined samples, higher than for polished and non-oxidized condition. On the other hand, oxidation increased the roughness only for polished condition. The corrosion resistance was improved in all oxidized samples, and the best result was found to the intermediate roughness (Ra = 0.76 um), in a machined sample. The results demonstrated that thermal oxidation can be used to overcome machining limitations regarding corrosion resistance, achieving behavior even better than polished samples.


2011 ◽  
Vol 695 ◽  
pp. 162-165
Author(s):  
Cong Hui Zhang ◽  
Xiao Mei He ◽  
Xin Zhe Lan ◽  
Xi Cheng Zhao

Vacuum annealing was carried out for the SMAT treated CP-Ti sample at different temperatures. The structure and the properties of the SMAT sample before and after the annealing were analyzed by means of the optical microscope, hardness and polarization curve testing. The results show that, when the annealing temperature of surface nanocrystallized CP-Ti treated CP-Ti (SMAT) was below 350°C, the microstructure and hardness of nanostructured surface was stability, and its corrosion resistance was improved compared to non-annealing one. In particular, the corrosion resistance at 150°C was better than that of the original CP-Ti.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 980
Author(s):  
Fernanda Martins Queiroz ◽  
Maysa Terada ◽  
Aline F. Santos Bugarin ◽  
Hercílio Gomes de Melo ◽  
Isolda Costa

The 2XXX Al alloys are characterized by their superior mechanical properties resulting from alloying elements and precipitation hardening treatments. The AA2524-T3 alloy was developed to replace the AA2024-T3 alloy in the aerospace industry. However, both alloys present many intermetallic particles (IMCs) in their microstructure, and this is the main reason for their high susceptibility to localized corrosion (such as pitting and stress corrosion cracking). Despite the similarities between these alloys (e.g., chemical composition and type of intermetallics) the literature comparing their properties is scarce and focuses mainly on their mechanical properties, not their corrosion resistances. In this investigation, the corrosion resistance of the AA2524-T3 alloy was compared to the AA2024-T3 alloy. The microstructure of both alloys was analyzed by Scanning Electron Microscopy before and after immersion in the test electrolyte, and the number and area fraction of intermetallics of each alloy was determined. The corrosion resistance of both alloys was monitored as a function of exposure time by electrochemical impedance spectroscopy and the results were fitted using electrical equivalent circuits. The AA2524-T3 alloy presented not only higher impedance values but also less corroded areas than the AA2024-T3 alloy.


2021 ◽  
Vol 21 (2) ◽  
pp. 178
Author(s):  
I Nyoman Jujur ◽  
Sri Endah Susilowati ◽  
Seto Roseno ◽  
Agus Hadi Santosa Wargadipura

To improve mechanical properties, especially elongation, of as-cast medical grade 316L stainless steel, niobium (Nb) was introduced into the alloys, followed by solution heat treatment. Alloying was performed using a 250 kg air induction melting furnace with duplex raw materials and ferronickel. Heat treatment using a solution at 1040 oC, with a holding time of 45 minutes, and water quenching was used. The sample was tested using hardness and ultimate tensile machines. Corrosion tests with simulated body fluids were carried out using media with similar corrosion conditions to human blood. Microstructure observations were performed optically. The results show that the addition of Nb increases the hardness of medical grade 316L stainless steel by 6% compared to the unalloyed steel, both before and after heat treatment. The addition of Nb increases the tensile strength by 8% compared to non-heat treated steel and increases the elongation before and after heat treatment by 8% and 5%, respectively. However, the corrosion rate of the material with Nb is higher than without the addition of Nb. Nb as a carbide former improves the mechanical properties of medical grade 316L stainless steel but adversely affects its corrosion resistance


2020 ◽  
pp. 2150001
Author(s):  
YESIM YILMAZ ◽  
HULYA DEMIROREN

Titanium and its alloys used in biomaterial applications are preferrably the cause of high-corrosion resistance properties in addition to having good mechanical properties. Commercially pure Ti (CP-Ti) (Grade 2), Ti6Al4V (Grade 5) and Ti6Al4V-ELI (Grade 23) samples are used as biomaterials exposed to 750°C and 1060°C for 1[Formula: see text]h. The samples were cooled in air after heat treatment at 750°C, the other samples were cooled in water after heat treatment at 1060°C. The free-heat treatment samples are as producted. Microstructures of heat-treated samples and non-made samples by comparison were evaluated before and after corrosion process microstructures and tensile strengths. Test solution is 0.5[Formula: see text]mol H2SO[Formula: see text][Formula: see text]mol HCl mixture. The corrosion resistance of the titanium samples was evaluated. Microstructure images were monitorized on optical and SEM microscopes. In this paper, the effect of heat treatment was determined on the microstructure, mechanical properties and corrosion resistances of the material. As a result, heat treatment is useful on corrosion resistance of alloyed samples.


Sign in / Sign up

Export Citation Format

Share Document