Analysis of Influence of Optical Electrode Geometry Effects on Manipulation Using Lateral-Field Optoelectronic Tweezers

2011 ◽  
Vol 194-196 ◽  
pp. 2444-2447
Author(s):  
Chun Feng Song ◽  
Ke Chen ◽  
Zhong Hua Ni

The use of photoconductive film improves the flexibility of dielectrophoretic device and the optoelectronic tweezers provides dynamically reconfigurable optical electrode which provides effective technology in the bio-particles parallel manipulation. In this paper, a circle floating electrode and a castellated shape optical electrode are designed in the lateral-field optoelectronic tweezers. The gradient of the square of the electric field is analyzed as the main parameter. The simulation results show that the floating electrode changes the distribution of the electric field and improves the manipulation capability in the region between the strip electrodes. The castellated shape electrode extends the strip electrode and performs the capability of the traditional physical castellated shape electrode. On the same condition the peak value of x direction of the gradient of the square of the electric field is about 15% smaller than the traditional physical electrode mode because the potential decays in the photoconductive film. To obtain the reconfigurable capability, this shortcoming can be overcome by increasing the applied AC signal voltage.

2012 ◽  
Vol 588-589 ◽  
pp. 614-617
Author(s):  
Zhi Hua Wang ◽  
Mei Ling Li ◽  
Jian Zhang ◽  
Li Wang ◽  
Yong Xu

The Equivalent Turn Number of Coil (ETNC) is proposed for induction coil design. Simulation results show that the vibrationonthe induction coil’s structure. The optimized coil is composed by two symmetry parts on the condition of sinusoidal vibration. The effective value of output EMF of optimized coil increases 51.39% than uniform coil’s. In the experiment, the optimized and uniform coils are fabricated with 600 turns and comparatively studied in the same vibration-to-electrical generator. The test results show that the peak-to-peak value and effective value of output EMF of the optimized coil can increase up to 52.59% and 48.76%, respectively, compared with the uniform coil.


2001 ◽  
Vol 700 ◽  
Author(s):  
Malinda M. Tupper ◽  
Marjorie E. Chopinaud ◽  
Takamichi Ogawa ◽  
Michael J. Cima

AbstractDispensing micron-scale dielectric materials can be achieved through the use of dielectrophoresis. Electrodes are designed to create a nonuniform electric field. This method is expected to be applicable for transfer of a wide range of dielectric powders as well as small, shaped components. Small, 150 μm diameter silica spheres, as well as sodium fluorescein powder have been dispensed by this method. Selecting the appropriate electrode geometry and electric field intensity controls the amount collected. As little as 1.0 μg of sodium fluorescein powder, and as much as 16 mg of silica beads have been collected, and repeatability within 10 % of the total amount dispensed has been achieved.


2013 ◽  
Vol 684 ◽  
pp. 518-521
Author(s):  
Eugene Rhee ◽  
Ji Hoon Lee

This paper presents the electric field characteristics in a reverberation chamber which is an electromagnetic compatibility test facility that uses a stirrer to generate a uniform electric field inside it. In this paper, a diffuser is introduced from acoustics and newly designed to overcome problems of a stirrer. To validate the effect of a diffuser, a composite quadratic residue diffuser and a reverberation chamber are modeled. Then, the field uniformity inside the reverberation chamber is simulated by XFDTD 6.2 simulation program. Simulation results show that the electric field uniformity in the reverberation chamber satisfies the international standard requirement. This shows that the composite quadratic residue diffuser can be substituted for a stirrer.


2021 ◽  
Vol 16 (1) ◽  
pp. 97-103
Author(s):  
Xin-Nan Li ◽  
Guang-Xin Wang ◽  
Xiu-Zhi Duan

A variational approach is utilized to investigated the electron-impurity interaction in zinc-blende (In,Ga)N-GaN strained coupled quantum wells. The donor imputrity states are studied in consideration of the effects of hydrostatic pressure and external electric field. Our results indicate that the binding energy visibly depends on hydrostatic pressure, strain of coupled quantum wells, and applied electric field. The binding energy demonstrates a peak value with the reduction of the left-well width, and which displays a minimum value with the increment of the middle-barrier width. A decreasing behavior on the binding energy is also demonstrated when the right-well width enhances. Also the binding energy augments constantly with the increasing hydrostatic pressure. Besides, the dependency of the binding energy on variation of impurity position has been analyzed detailedly.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840073
Author(s):  
Hui Li ◽  
Yi-Bo Jiang ◽  
Jian-Wen Cai

Azimuthal electromagnetic wave logging-while-drilling (LWD) technology can detect weak electromagnetic wave signal and realize real-time resistivity imaging. It has great values to reduce drilling cost and increase drilling rate. In this paper, self-adaptive hp finite element method (FEM) has been used to study the azimuthal resistivity LWD responses in different conditions. Numerical simulation results show that amplitude attenuation and phase shift of directional electromagnetic wave signals are closely related to induced magnetic field and azimuthal angle. The peak value and polarity of geological guidance signals can be used to distinguish reservoir interface and achieve real-time geosteering drilling. Numerical simulation results also show the accuracy of the self-adaptive hp FEM and provide physical interpretation of peak value and polarity of the geological guidance signals.


2020 ◽  
Vol 12 ◽  
Author(s):  
Jue Wang ◽  
Tao Ma ◽  
Xu Wang ◽  
Fang Wang

Background: : A THz Plasmonic Waveguide Based on Graphene Coated Bow-tie Nanowire (TPW-GCBN) is proposed. The waveguide characteristics are investigated by using Finite Element Method (FEM). The influence of the geometric parameters on propagation constants, electric field distributions, effective mode areas, and propagation lengths are obtained numerically. The performance tunability of TPW-GCBN is also studied by adjusting the Fermi energy (FE). The simulation results show that the TPW-GCBN has better mode confinement ability. The TPW-GCBN has potential applications in high density integration of photonic circuit for the future tunable micro nano optoelectronic devices. Surface plasmon polaritons (SPPs) based waveguides have been widely used to enhance the local electric fields. It also has the capability of manipulating electromagnetic fields on the deep-subwavelength. Objective:: The waveguide characteristics of a THz Plasmonic Waveguide Based on Graphene Coated Bow-tie Nanowire (TPW-GCBN) should be investigated. The tunability of TPW-GCBN should be studied by adjusting the chemical potential (FE) which can be changed by the voltage. Method: : The mode analysis and parameter sweep in Finite Element Method (FEM) were used to simulate the TPW-GCBN for analyzing effective refractive index (neff), electric field distributions, normalized mode areas (Am), propagation length (Lp) and figure of merit (FoM). Results: : At 5 THz, Aeff of λ2/14812, Lp of ~2 μm and FoM of 25 can be achieved. The simulation results show that the TPW-GBN has good mode confinement ability and flexible tunability. Conclusion:: The TPW-GBN provides a new freedom to manipulate the graphene surface plasmons, and leads to new applications in high density integration of photonic circuit for tunable integrated optical devices.


Author(s):  
Ibrahim A. Metwally ◽  
Md Abdus Salam ◽  
Ali Al-Maqrashi ◽  
Saif AR Sumry ◽  
Saif SH Al-Harthy

Electrostatic and electrodynamic field analyses of 33kV line insulators were introduced to compare the electric-field and the current density profiles of commonly used line insulators in Oman; namely, silicone rubber (SiR) and porcelain line post insulators, and porcelain cap and pin insulator string. SLIM software package was used for such simulation, which is a fully integrated collection of software modules that provides facilities for the generation and solution of electromagnetic finite element models. The simulation results reveal that for the electrostatic simulation under pollution conditions, SiR and porcelain line-post insulators give maximum values of the electric field of 360kV/m and 1700kV/m, respectively. The latter value exceeds the recommended electric field level of 500kV/m. For the electrodynamic simulation under pollution conditions, the electric field and the current density are much higher for porcelain insulator compared to those of SiR insulator. The simulation of four cap-pin standard insulator string reveals that there is high electric field (1250kV/m) at the cap-insulator gap which can cause high current density for polluted case. Finally, the trend of the simulation results has been verified by experimental tests, which has been conducted on different 33kV line insulators having different designs and materials.


2014 ◽  
Vol 1006-1007 ◽  
pp. 253-258
Author(s):  
Yun Xia Li ◽  
Zeng Cai Wang

Automated Mechanical Transmission (AMT) is applied as a new starting device for belt conveyor in the paper. Simulation model of AMT driving belt conveyor is established in AMESim. Simulations of start-up process at first gear condition and shifting process from first to eighth gear are discussed. Belt velocity is accepted as the law of gearshifts to judge the moment of shifting. Simulation results show that AMT could achieve the purpose of belt conveyor’s soft-starting gradually. The belt appears short-time acceleration mutations during shifting process which results in the belt maximum tension, the driving pulley torque, and other parameters changing within their allowable limits. The belt maximum tension appears short-time mutations when the clutch is just engaged, in which case the peak value of belt maximum tension can achieve 110 KN approximately, and is less than its allowable limit. After shift actions, the belt maximum tension and other parameters curves tend to be stable.


2013 ◽  
Vol 717 ◽  
pp. 158-163
Author(s):  
Phasapon Manosukritkul ◽  
Amonrat Kerdpardist ◽  
Montree Saenlamool ◽  
Ekalak Chaowicharat ◽  
Amporn Poyai ◽  
...  

In this paper, we introduced a P-buried (Pb) layer under trench gate which relieved the electric field crowding in the Non Punch Through Trench gate Insulated Gate Bipolar Transistor (NPT-TIGBT) structure. The Pblayer, with carrier concentration of 5x1016cm-3, was created underneath the trench gate within the n-drift layer. In this way, the concentration of electric field at the trench bottom corner decreased. As a result, the breakdown voltage characteristics of NPT-TIGBT improved. The structures were proposed and verified by T-CAD Sentuarus simulation. From the simulation results, the breakdown voltage increased by approximately 30% compared with conventional NPT-TIGBT.


Sign in / Sign up

Export Citation Format

Share Document