Study on Tribological Properties of Organic Bismuth Compounds as Lubricationg Additive

2011 ◽  
Vol 233-235 ◽  
pp. 1632-1635 ◽  
Author(s):  
Jian Qiang Hu ◽  
Jiang Zhu ◽  
Ke Yi Gao ◽  
Yi Wei Fei

A bismuth diamyl-dithiocarbamate additive was synthesized. A four-ball tester was used to evaluate the tribological performance of the additive in mineral oil, and compared with same types of metal additives. The results show that it exhibits better load-carrying capacities than said organic metal additives. The surface analytical tools such as X-ray photoelectron spectrometer (XPS) and Scanning electron microscopy (SEM) were used to investigate the topography, the compositions contents and the depth profile of some typical elements on the rubbing surface of worn scar. Smooth topography of worn scar further confirms that the additive showed good antiwear capacities, the results of X-ray photoelectron spectrometer and X-Ray Energy Dispersive Spectroscopy analyses indicated that tribochemical mixed protective films consists of bismuth compounds, sulfides, sulphates were formed on the rubbing surface, which contribute to improve the tribological properties of lubricants. Particularly, a large amounts of bismuth atoms play an important role in improving antiwear properties of oils.

Author(s):  
Yi Zhang ◽  
Yan Luo ◽  
Jian-Qian Hu ◽  
Tao Zhang ◽  
Yun-Yun Xu

A four-ball tester was used to evaluate the tribological performance of bismuth diamyl-dithiocarbamate in mineral oil, and compared with same types of metal additives. The results show that it exhibits better load-carrying capacities than said organic metal additives. The surface analytical tools such as X-ray photoelectron spectrometer (XPS) and Scanning electron microscopy (SEM) were used to investigate the topography, the compositions contents and the depth profile of some typical elements on the rubbing surface of worn scar. Smooth topography of worn scar further confirms that the additive showed good antiwear capacities, the results of XPS indicated that tribochemical mixed protective films consists of bismuth compounds, sulfides, sulphates and metal oxides, which contribute to improve the tribological properties of lubricants. Particularly, a larger number of bismuth containing compounds play an important role in improving extreme pressure properties of oils.


Tribology ◽  
2005 ◽  
Author(s):  
Jianqiang Hu ◽  
Zhanhe Du ◽  
Junbing Yao

An cadmium dialkyl-dithiophosphyl-dithiophosphate additive was synthesized. A four-ball tester was used to evaluate the tribological performance of the additive in mineral base oil under different loads, compared with commercial additives. The results show that it exhibits excellent antiwear and load-carrying capacities and better than these additives. The surface analytical tools such as Auger Electron Spectrometer (AES), Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) were used to investigate the topography, the contents and the depth profile of some typical elements on the rubbing surface of worn scar. Smooth and light topography of worn scar further confirms that the additive showed good antiwear capacities, the results of Auger electron spectrometer and energy dispersive X-ray analysis indicate that tribochemically protective films consists of cadmium compouds, sulfides, sulphates and phosphates were formed on the rubbing surface, which contribute to improving the tribological properties of lubricants. Particularly, the results from depth profile indicate that a large amounts of cadmium are rich in outer layer of surface, which play an important role in improving antiwear properties of oils. Finally, the antiwear mechanism of the additive were proposed.


2016 ◽  
Vol 24 (05) ◽  
pp. 1750071
Author(s):  
XIN XU ◽  
JIANQIANG HU ◽  
SHIZHAO YANG ◽  
FENG XIE ◽  
LI GUO

A four-ball tester was used to evaluate the tribological performances of bismuth naphthenate (BiNap), sulfurized isobutene (VSB), and their combinations. The results show that the antiwear properties of BiNap and VSB are not very visible, but they possess good extreme pressure (EP) properties, particularly sulfur containing bismuth additives. Synergistic EP properties of BiNap with various sulfur-containing additives were investigated. The results indicate that BiNap exhibits good EP synergism with sulfur-containing additives. The surface analytical tools, such as X-ray photoelectron spectrometer (XPS) scanning electron microscope (SEM) and energy dispersive X-ray (EDX), were used to investigate the topography, composition contents, and depth profile of some typical elements on the rubbing surface. Smooth topography of wear scar further confirms that the additive showed good EP capacities, and XPS and EDX analyzes indicate that tribochemical mixed protective films composed of bismuth, bismuth oxides, sulfides, and sulfates are formed on the rubbing surface, which improves the tribological properties of lubricants. In particular, a large number of bismuth atoms and bismuth sulfides play an important role in improving the EP properties of oils.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xin Xu ◽  
Jian-Qiang Hu ◽  
Feng Xie ◽  
Li Guo ◽  
Jun Ma ◽  
...  

Two oil-soluble organic titanium compounds (OTCs) such as titanium dialkyldithiocarbamate (TiDDC) and sulfurized titanate (TiS) were synthesized and identified by Fourier-transform infrared spectroscopy (FTIR). The antiwear and extreme pressure properties of TiDDC or TiS with borate ester containing nitrogen (BNO) additive in mineral base oils were evaluated by four ball tester. The results show that TiDDC and TiS not only possess good antiwear and load-carrying properties, respectively, but also exhibit good antiwear synergism with BNO additive without impairing extreme pressure performances. Moreover, the synergistic antiwear properties of the said additives are improved significantly under the optimum additives ratios. The topography of wear scar and the composition and chemical states of typical elements on the rubbing surfaces were analyzed by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) and X-ray photoelectron spectrometer (XPS). The proposed synergistic antiwear mechanism involves an effective interaction between TiDDC or TiS and BNO additive, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Vladimir An ◽  
Yuri Irtegov ◽  
Charles de Izarra

This work was aimed at studying the tribological properties of nanolamellar tungsten and molybdenum disulfides produced from nanosized W and Mo nanopowders by self-propagating high-temperature synthesis. The prepared WS2and MoS2powders were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential thermal analysis (DTA). For tribological tests, oil-based lubricants added with nanolamellar tungsten and molybdenum disulfides were prepared. The tribological tests show that the friction coefficient of the nanolamellar powders is lower than that of commercial powder(μmin=0.024and 0.064, resp.). It is also found that the oil-based lubricants with nanolamellar disulfide additives display higher antifriction and antiwear properties compared to commercial powder.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Haizhong Wang ◽  
Zenghong Song ◽  
Dan Qiao ◽  
Dapeng Feng ◽  
Jinjun Lu

The tribological performance of Si3N4ball sliding against Ti3SiC2disc lubricated by lithium-based ionic liquids (ILs) was investigated using an Optimol SRV-IV oscillating reciprocating friction and wear tester at room temperature (RT) and elevated temperature (100°C). Glycerol and the conventional imidazolium-based IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (L-F106) were used as references under the same experimental conditions. The results show that the lithium-based ILs had higher thermal stabilities than glycerol and lower costs associated with IL preparation than L-F106. The tribotest results show that the lithium-based ILs were effective in reducing the friction and wear of Si3N4/Ti3SiC2contacts. [Li(urea)]TFSI even produced better tribological properties than glycerol and L-F106 both at RT and 100°C. The SEM/EDS and XPS results reveal that the excellent tribological endurance of Si3N4/Ti3SiC2contacts lubricated by lithium-based ILs was mainly attributed to the formation of surface protective films composed of various tribochemical products.


Author(s):  
Homender Kumar ◽  
AP Harsha

This research paper addresses the optimization of various control parameters by using the Taguchi method to assess the tribological properties of PAOs based nanolubricants. The concentration of COOH-functionalized multiwalled carbon nanotubes (MWCNTs), applied load, sliding velocity and kinematic viscosity of polyalphaolefins (PAOs) were selected as process parameters or control factor. The MWCNTs at a varying concentration (0.025-0.15 wt.%) were blended separately in PAOs to formulate the nanolubricants. The tribological experimentations were performed by Taguchi’ L18 mixed orthogonal array using “ball on disc” type tribometer. The analysis of variance (ANOVA) was adopted to estimate the most prominent factors influencing the tribological performance of nanolubricants. The statistical results showed that the applied load, followed by a concentration of MWCNTs conferred the most significant impact on the frictional characteristic. In contrast, the kinematic viscosity of PAOs, followed by concentration of MWCNTs has been observed the most significant influencing factors on the antiwear properties of nanolubricants. The probabilistic rationale for the advancement in friction and wear properties were assessed through various analytical tools.


2021 ◽  
pp. 1-13
Author(s):  
Jian Liu ◽  
Xudong Sui ◽  
Zhen Yan ◽  
Guosheng Huang ◽  
Junying Hao

Abstract Cr doped MoS2 films were deposited by magnetron sputtering. The tribological properties of Cr doped MoS2 films under vacuum (VC) and air (AR) environments were investigated. The results show that Cr doped MoS2 film with Cr target power of 0.2 A (0.2 A Cr:MoS2 film) exhibits low friction coefficient and long wear life under both VC and AR environments. The chemical compositions of the films were analyzed by energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). With the increases of Cr target power, the content of Cr increases. The cross-sectional FESEM morphologies show that the structure of the films changed from granular particles to column when the Cr target power increases from 0.2A to 0.4A. The wear mechanism has also been discussed based on the characteristics of worn surface. The 0.4 A Cr:MoS2 film has the lowest wear volume among these films, which can be attributed to the compact microstructure. The bandgap of Cr doped MoS2 films were measured by XPS and the tribological performance of the film is found to be best when there is a modest bandgap. It can be speculated that the tribological performance of Cr doped MoS2 films are closely related to the width of bandgap.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hai-zhong Wang ◽  
Dan Qiao ◽  
Song-wei Zhang ◽  
Da-peng Feng ◽  
Jin-jun Lu

The tribological performance of Si3N4-Ti3SiC2contacts lubricated by alkylimidazolium dialkyl phosphates ionic liquids (ILs) was investigated using an Optimol SRV-IV oscillating reciprocating friction and wear tester at room temperature (25°C) and 100°C. Glycerol and tributyl phosphate (TBP) were also selected as lubricants for Si3N4-Ti3SiC2contacts to study the tribological properties under the same experimental conditions for comparison. Results show that the alkylimidazolium dialkyl phosphates ILs were effective in reducing the friction and wear for Si3N4-Ti3SiC2contacts, and their performance is superior to that of glycerol and TBP. The SEM/EDS and XPS results reveal that the excellent tribological endurance of alkylimidazolium dialkyl phosphates ILs is mainly attributed to the high load-carrying capacity of the ILs and the formation of surface protective films consisting of TiO2, SiOx, titanium phosphate, amines, and nitrogen oxides by the tribochemical reactions.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4226 ◽  
Author(s):  
Wei Song ◽  
Bailing Jiang ◽  
Dongdong Ji

In this study, micro-arc oxidation (MAO) of aluminum 6061 alloy was carried out within a silicate base electrolyte containing 0.75 g/L of cellulose, and the tribological properties of the coating were investigated. The as-prepared coating was detected by Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), a scanning electron microscope (SEM) and an energy-dispersive spectrometer (EDS), respectively. The results suggested that cellulose filled in the microcracks and micropores, or it existed by cross-linking with Al3+. In addition, it was found that the cellulose had little effect on the coating hardness. However, the thickness and roughness of the coating were improved with the increase in cellulose concentration. Moreover, the ball-on-disk test showed that the friction coefficient, weight loss and wear rate of the MAO coating decreased with the increase in cellulose concentration. Further, the performances of the coatings obtained in the same electrolyte, under different preserved storage periods, were compared, revealing that the cellulose was uniformly dispersed in the electrolyte and improved the tribological properties of the MAO coating within 30 days.


Sign in / Sign up

Export Citation Format

Share Document