The Development of Beam-Arch Combination System Bridge Based on Mechanics and Aesthetic

2011 ◽  
Vol 243-249 ◽  
pp. 1664-1668
Author(s):  
Wen Gang Ma ◽  
Qiao Huang ◽  
Ming Yang ◽  
Yuan Ren

The mechanical characteristics and common forms of beam-arch combination system bridge and its new development are introduced. With the rapid development of economy, more and more steel structures are applied to bridge engineering. The usage of steel structure makes the pursuit of aesthetic possible besides the requirements of safety, economy and practicality. Furthermore, the aesthetic design is playing an important role in bridge design, especially in the design of an urban bridge. Aesthetic of a bridge is part of the aesthetic of environment, but which far surpasses the limited rang of environment where it is constructed. The beam-arch combination system bridge has achieved considerable development because of the requirement of aesthetic, which makes it widely used in highway bridge and urban bridge. Especially in urban bridge engineering, a new combination of beam-arch, beam and arch combining in transverse direction of bridge, has been invented and more and more used besides the conventional combination form of beam and arch combining in longitudinal direction of bridge, which is more beautiful but also more complicated for design and construction.

2010 ◽  
Vol 37-38 ◽  
pp. 1643-1646
Author(s):  
Zhao Xin Meng ◽  
Jian Xin Zhao ◽  
Shu Yang Wang ◽  
Nan Zhou

In recent years, the bio-oil, as a new kind of clean energy, has been paid with more attentions and has been in rapid development. Meanwhile, the design and research of the bio-oil equipment also has made a great progress. This paper presented the research of the main unit installed steel structure which was with the 3000t yearly capacity. It analyzed and researched the structure and load characteristics of the bio-oil main unit installed steel structure. According to the related research theory and design standards, by using software ANSYS establish the three-dimensional model of the main unit installed steel structure. The paper also analyzed and calculated the wind load. The model structure has been optimized on the foundation of the analyzing preliminary model foundation. The stability of the equipment has been enhanced.


2014 ◽  
Vol 501-504 ◽  
pp. 777-781 ◽  
Author(s):  
Fang Hui Li ◽  
Fan Meng

With the rapid development of economic and construction industry, light-weight steel structural system is widely used in the modern building construction. While, the light-weight steel structures are more sensitive under the effect of snow load than the other structure systems according to the data from the large amount of accidents of steel structure failures, which indicated the necessary and urged us to focus on the impact of snow on the light-weight steel structures. This paper introduces the current research situation and analyzes the method of snow load determination on gable frames in the load code of different countries, and provides some suggestions on the snow load design of light-weight steel structures finally.


2011 ◽  
Vol 255-260 ◽  
pp. 2341-2344
Author(s):  
Mohammad Saeed Masoomi ◽  
Siti Aminah Osman ◽  
Ali Jahanshahi

This paper presents the performance of base-isolated steel structures under the seismic load. The main goals of this study are to evaluate the effectiveness of base isolation systems for steel structures against earthquake loads; to verify the modal analysis of steel frame compared with the hand calculation results; and development of a simulating method for base-isolated structure’s responses. Two models were considered in this study, one a steel structure with base-isolated and the other without base-isolated system. The nonlinear time-history analysis of both structures under El Centro 1940 seismic ground motion was used based on finite element method through SAP2000. The mentioned frames were analyzed by Eigenvalue method for linear analysis and Ritz-vector method for nonlinear analysis. Simulation results were presented as time-acceleration graphs for each story, period and frequency of both structures for the first three modes.


Author(s):  
Haigen Cheng ◽  
Cong Hu ◽  
Yong Jiang

AbstractThe steel structure under the action of alternating load for a long time is prone to fatigue failure and affects the safety of the engineering structure. For steel structures in complex environments such as corrosive media and fires, the remaining fatigue life is more difficult to predict theoretically. To this end, the article carried out fatigue tests on Q420qD high-performance steel cross joints under three different working conditions, established a 95% survival rate $$S{ - }N$$ S - N curves, and analyzed the effects of corrosive media and high fire temperatures on its fatigue performance. And refer to the current specifications to evaluate its fatigue performance. The results show that the fatigue performance of the cross joint connection is reduced under the influence of corrosive medium, and the fatigue performance of the cross joint connection is improved under the high temperature of fire. When the number of cycles is more than 200,000 times, the design curves of EN code, GBJ code, and GB code can better predict the fatigue life of cross joints without treatment, only corrosion treatment, and corrosion and fire treatment, and all have sufficient safety reserve.


2021 ◽  
Vol 13 (12) ◽  
pp. 2263
Author(s):  
Dongfeng Jia ◽  
Weiping Zhang ◽  
Yuhao Wang ◽  
Yanping Liu

As fundamental load-bearing parts, the cylindrical steel structures of transmission towers relate to the stability of the main structures in terms of topological relation and performance. Therefore, the periodic monitoring of a cylindrical steel structure is necessary to maintain the safety and stability of existing structures in energy transmission. Most studies on deformation analysis are still focused on the process of identifying discrepancies in the state of a structure by observing it at different times, yet relative deformation analysis based on the data acquired in single time has not been investigated effectively. In this study, the piecewise cylinder fitting method is presented to fit the point clouds collected at a single time to compute the relative inclination of a cylindrical steel structure. The standard deviation is adopted as a measure to evaluate the degree of structure deformation. Meanwhile, the inclination rate of each section is compared with the conventional method on the basis of the piecewise cylinder fitting parameters. The validity and accuracy of the algorithm are verified by real transmission tower point cloud data. Experimental results show that the piecewise cylinder fitting algorithm proposed in this research can meet the accuracy requirements of cylindrical steel structure deformation analysis and has high application value in the field of structure deformation monitoring.


2021 ◽  
pp. xx-xx

Several scholars have focused on the different approaches in designing convivial urban spaces, but literary evidence shows that the essence of aesthetic design in public urban spaces, by referring to the main dimensions involved in the shaping of urban vitality, has not been adequately researched. In this regard, this study, by hypothesizing that the quality of urban design leads to a vital urban environment, focuses on urban vitality from the aesthetic point of view. Thus, in using qualitative grounded theory as a main methodological tool and using a systematic review of the related literature as the main induction approach for collecting qualitative data, five main dimensions of urban vitality, which are necessary to attain a correlation with the aesthetic quality of urban design, were conceptualized. The study concludes that the aesthetic design of an urban setting has a direct effect on the active involvement of its users and that this, therefore, has a direct consequence on the level of public urban vitality, manifested. Integrating the complexity theory with the five main dimensions used for assessing urban vitality was suggested as a viable area for further research.


Author(s):  
Vincenzo Castorani ◽  
Paolo Cicconi ◽  
Michele Germani ◽  
Sergio Bondi ◽  
Maria Grazia Marronaro ◽  
...  

Modularization is a current issue in the context of plant design. A modular system aims to reduce lead time and cost in design phases. An oil & gas plant consists of many Engineered-To-Order solutions to be submitted and approved during the negotiation phase. In this context, design tools and methods are necessary to support the design life cycle from the conceptual study to the detailed project. The paper proposes an approach to optimize the design of modularized oil & gas plants with a focus on the related steel structures. A test case shows the configuration workflow applied to a modular steel structure of about 400 tons. The modularized layout has been optimized using genetic algorithms. A Knowledge Base has been described to support the configuration phase related to the conceptual design. Design rules and metrics have been formalized from the analysis of past solutions.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Joachim Göttsche ◽  
Bernhard Hoffschmidt ◽  
Stefan Schmitz ◽  
Markus Sauerborn ◽  
Reiner Buck ◽  
...  

The cost of solar tower power plants is dominated by the heliostat field making up roughly 50% of investment costs. Classical heliostat design is dominated by mirrors brought into position by steel structures and drives that guarantee high accuracies under wind loads and thermal stress situations. A large fraction of costs is caused by the stiffness requirements of the steel structure, typically resulting in ∼20 kg/m2 steel per mirror area. The typical cost figure of heliostats (figure mentioned by Solucar at Solar Paces Conference, Seville, 2006) is currently in the area of 150 €/m2 caused by the increasing price of the necessary raw materials. An interesting option to reduce costs lies in a heliostat design where all moving parts are protected from wind loads. In this way, drives and mechanical layout may be kept less robust, thereby reducing material input and costs. In order to keep the heliostat at an appropriate size, small mirrors (around 10×10 cm2) have to be used, which are placed in a box with a transparent cover. Innovative drive systems are developed in order to obtain a cost-effective design. A 0.5×0.5 m2 demonstration unit will be constructed. Tests of the unit are carried out with a high-precision artificial sun unit that imitates the sun’s path with an accuracy of less than 0.5 mrad and creates a beam of parallel light with a divergence of less than 4 mrad.


Abstract. A steel structure is naturally lighter than a comparable concrete construction because of the higher strength and firmness of steel. Nowadays, the growth of steel structures in India is enormous. There are so many advantages in adopting the steel as structural members. Almost all high-rise buildings, warehouses & go-downs are steel structures and even some of the commercial buildings are made of steel. Tension members are the elements that are subjected to direct axial load which tends in the elongation of the structural members. Even today bolted connections play a major role in the connection of hot rolled structural steel members. In this experimental study the behavior of tension members (TM) such as plates, angles & channels have been studied under axial tensile force. There is strong relation between pitch and gauge (with in the specified limit as per IS 800:2007) in determining the rupture failure plane. In this study we intensively tested the behaviour of TM for different fasteners pattern by changing the pitch, gauge, end & edge distance and by adopting the different patterns or arrangements of bolted connection in it.


2021 ◽  
Vol 275 ◽  
pp. 02009
Author(s):  
Lixing Zhou

In the background of the rapid development of market economy, a large number of carbon dioxide emissions, leads to the obvious imbalance of carbon in nature. In recent years, the global temperature is getting warmer, the sea level is rising year by year, and the grain production is also significantly reduced, which will bring a great threat to the normal survival and development of human beings. In order to protect the environment on which human beings live, low carbon economy is put forward. Under the environment of low carbon economy, private enterprises are not only facing new development opportunities. At the same time, private enterprises are also facing new development challenges. If they want to develop further, they must actively deal with them. The author analyzes the opportunities and challenges faced by private enterprises under the environment of low carbon economy, and puts forward specific countermeasures, hoping to be helpful to the long-term development of private enterprises.


Sign in / Sign up

Export Citation Format

Share Document